
1

Chapter 4: Memory Management

Part 2: Paging Algorithms and
Implementation Issues

Chapter 4 2CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Page replacement algorithms

Page fault forces a choice
No room for new page (steady state)
Which page must be removed to make room for an
incoming page?

How is a page removed from physical memory?
If the page is unmodified, simply overwrite it: a copy
already exists on disk
If the page has been modified, it must be written back to
disk: prefer unmodified pages?

Better not to choose an often used page
It’ll probably need to be brought back in soon

Chapter 4 3CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Optimal page replacement algorithm

What’s the best we can possibly do?
Assume perfect knowledge of the future
Not realizable in practice (usually)
Useful for comparison: if another algorithm is within 5%
of optimal, not much more can be done…

Algorithm: replace the page that will be used furthest
in the future

Only works if we know the whole sequence!
Can be approximated by running the program twice

Once to generate the reference trace
Once (or more) to apply the optimal algorithm

Nice, but not achievable in real systems!

Chapter 4 4CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Not-recently-used (NRU) algorithm

Each page has reference bit and dirty bit
Bits are set when page is referenced and/or modified

Pages are classified into four classes
0: not referenced, not dirty
1: not referenced, dirty
2: referenced, not dirty
3: referenced, dirty

Clear reference bit for all pages periodically
Can’t clear dirty bit: needed to indicate which pages need to be flushed to disk
Class 1 contains dirty pages where reference bit has been cleared

Algorithm: remove a page from the lowest non-empty class
Select a page at random from that class

Easy to understand and implement
Performance adequate (though not optimal)

Chapter 4 5CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

First-In, First-Out (FIFO) algorithm

Maintain a linked list of all pages
Maintain the order in which they entered memory

Page at front of list replaced
Advantage: (really) easy to implement
Disadvantage: page in memory the longest may be
often used

This algorithm forces pages out regardless of usage
Usage may be helpful in determining which pages to keep

Chapter 4 6CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Second chance page replacement

Modify FIFO to avoid throwing out heavily used pages
If reference bit is 0, throw the page out
If reference bit is 1

Reset the reference bit to 0
Move page to the tail of the list
Continue search for a free page

Still easy to implement, and better than plain FIFO

A
t=0

referenced unreferenced

B
t=4

C
t=8

D
t=15

E
t=21

F
t=22

G
t=29

A
t=32

H
t=30



2

Chapter 4 7CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Clock algorithm

Same functionality as
second chance
Simpler implementation

“Clock” hand points to next
page to replace
If R=0, replace page
If R=1, set R=0 and advance
the clock hand

Continue until page with
R=0 is found

This may involve going all
the way around the clock…

A
t=0 B

t=4

C
t=8

D
t=15E

t=21

F
t=22

G
t=29

H
t=30

A
t=32 B

t=32

C
t=32

J
t=32

referenced unreferenced

Chapter 4 8CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Least Recently Used (LRU)

Assume pages used recently will used again soon
Throw out page that has been unused for longest time

Must keep a linked list of pages
Most recently used at front, least at rear
Update this list every memory reference!

This can be somewhat slow: hardware has to update a linked list
on every reference!

Alternatively, keep counter in each page table entry
Global counter increments with each CPU cycle
Copy global counter to PTE counter on a reference to the
page
For replacement, evict page with lowest counter value

Chapter 4 9CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Simulating LRU in software

Few computers have the necessary hardware to implement full LRU
Linked-list method impractical in hardware
Counter-based method could be done, but it’s slow to find the desired page

Approximate LRU with Not Frequently Used (NFU) algorithm
At each clock interrupt, scan through page table
If R=1 for a page, add one to its counter value
On replacement, pick the page with the lowest counter value

Problem: no notion of age—pages with high counter values will tend to
keep them!

Chapter 4 10CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Aging replacement algorithm

Reduce counter values over time
Divide by two every clock cycle (use right shift)
More weight given to more recent references!

Select page to be evicted by finding the lowest counter value
Algorithm is:

Every clock tick, shift all counters right by 1 bit
On reference, set leftmost bit of a counter (can be done by copying the
reference bit to the counter at the clock tick)

10000000

00000000

10000000

00000000

10000000

10000000

Tick 0

11000000

10000000

01000000

00000000

01000000

11000000

Tick 1

11100000

01000000

00100000

00000000

10100000

01100000

Tick 2

01110000

00100000

10010000

10000000

11010000

10110000

Tick 3

10111000

00010000

01001000

01000000

01101000

11011000

Tick 4
Referenced

this tick

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Chapter 4 11CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Working set

Demand paging: bring a page into memory when it’s requested by the
process
How many pages are needed?

Could be all of them, but not likely
Instead, processes reference a small set of pages at any given time—locality
of reference
Set of pages can be different for different processes or even different times in
the running of a single process

Set of pages used by a process in a given interval of time is called the
working set

If entire working set is in memory, no page faults!
If insufficient space for working set, thrashing may occur
Goal: keep most of working set in memory to minimize the number of page
faults suffered by a process

Chapter 4 12CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

How big is the working set?

Working set is the set of pages used by the k most recent
memory references
w(k,t) is the size of the working set at time t
Working set may change over time

Size of working set can change over time as well…

k

w(k,t)



3

Chapter 4 13CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Working set page replacement algorithm

Chapter 4 14CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Page replacement algorithms: summary

Implementable version of Working SetWSClock

Somewhat expensive to implementWorking Set

Good approximation to LRU, efficient to implementAging

Poor approximation to LRUNFU (Not Frequently Used)

Excellent, but hard to implement exactlyLRU (Least Recently Used)

Better implementation of second chanceClock

Big improvement over FIFOSecond chance

Might throw out useful pagesFIFO (First-In, First Out)

CrudeNRU (Not Recently Used)

Not implementable, but useful as a benchmarkOPT (Optimal)

CommentAlgorithm

Chapter 4 15CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Modeling page replacement algorithms

Goal: provide quantitative analysis (or simulation)
showing which algorithms do better

Workload (page reference string) is important: different
strings may favor different algorithms
Show tradeoffs between algorithms

Compare algorithms to one another
Model parameters within an algorithm

Number of available physical pages
Number of bits for aging

Chapter 4 16CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Oldest page

Youngest page

Page referenced

4410003210

22411103210

332444103210

432104103210

How is modeling done?

Generate a list of references
Artificial (made up)
Trace a real workload (set of processes)

Use an array (or other structure) to track the pages in physical memory at any
given time

May keep other information per page to help simulate the algorithm (modification time,
time when paged in, etc.)

Run through references, applying the replacement algorithm
Example: FIFO replacement on reference string 0 1 2 3 0 1 4 0 1 2 3 4

Page replacements highlighted in yellow

Chapter 4 17CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

2104321110

Oldest page

Youngest page

Page referenced

104321000

32104322210

432104333210

432104103210

Belady’s anomaly

Reduce the number of page faults by supplying more memory
Use previous reference string and FIFO algorithm
Add another page to physical memory (total 4 pages)

More page faults (10 vs. 9), not fewer!
This is called Belady’s anomaly
Adding more pages shouldn’t result in worse performance!

Motivated the study of paging algorithms

Chapter 4 18CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Modeling more replacement algorithms

Paging system characterized by:
Reference string of executing process
Page replacement algorithm
Number of page frames available in physical memory (m)

Model this by keeping track of all n pages referenced
in array M

Top part of M has m pages in memory
Bottom part of M has n-m pages stored on disk

Page replacement occurs when page moves from top
to bottom

Top and bottom parts may be rearranged without causing
movement between memory and disk



4

Chapter 4 19CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Example: LRU

Model LRU replacement with
8 unique references in the reference string
4 pages of physical memory

Array state over time shown below
LRU treats list of pages like a stack

0000000000000000
222222222222222200
6666666611111111220
55444444666555551120
775557774446666453120
3173355577744336453120
43171333533774736453120
143171113553374736453120
143171113553374736453120

Chapter 4 20CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Stack algorithms

LRU is an example of a stack algorithm
For stack algorithms

Any page in memory with m physical pages is also in memory with m+1
physical pages
Increasing memory size is guaranteed to reduce (or at least not increase) the
number of page faults

Stack algorithms do not suffer from Belady’s anomaly
Distance of a reference == position of the page in the stack before the
reference was made

Distance is ∞ if no reference had been made before
Distance depends on reference string and paging algorithm: might be different
for LRU and optimal (both stack algorithms)

Chapter 4 21CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Predicting page fault rates using distance

Distance can be used to predict page fault rates
Make a single pass over the reference string to
generate the distance string on-the-fly
Keep an array of counts

Entry j counts the number of times distance j occurs in the
distance string

The number of page faults for a memory of size m is
the sum of the counts for j>m

This can be done in a single pass!
Makes for fast simulations of page replacement algorithms

This is why virtual memory theorists like stack
algorithms!

Chapter 4 22CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Local vs. global allocation policies

What is the pool of pages
eligible to be replaced?

Pages belonging to the
process needing a new page
All pages in the system

Local allocation: replace a
page from this process

May be more “fair”: penalize
processes that replace many
pages
Can lead to poor performance:
some processes need more
pages than others

Global allocation: replace a
page from any process

14A0
12A1
8A2
5A3
10B0
9B1
3B2
16C0
12C1
8C2
5C3
4C4

Page

Last access time

A4A4

Local
allocation

A4 Global
allocation

Chapter 4 23CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Page fault rate vs. allocated frames

Local allocation may be more “fair”
Don’t penalize other processes for high page fault rate

Global allocation is better for overall system performance
Take page frames from processes that don’t need them as much
Reduce the overall page fault rate (even though rate for a single
process may go up)

Chapter 4 24CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Control overall page fault rate

Despite good designs, system may still thrash
Most (or all) processes have high page fault rate

Some processes need more memory, …
but no processes need less memory (and could give some
up)

Problem: no way to reduce page fault rate
Solution :
Reduce number of processes competing for memory

Swap one or more to disk, divide up pages they held
Reconsider degree of multiprogramming



5

Chapter 4 25CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

How big should a page be?

Smaller pages have advantages
Less internal fragmentation
Better fit for various data structures, code sections
Less unused physical memory (some pages have 20 useful
bytes and the rest isn’t needed currently)

Larger pages are better because
Less overhead to keep track of them

Smaller page tables
TLB can point to more memory (same number of pages, but more
memory per page)
Faster paging algorithms (fewer table entries to look through)

More efficient to transfer larger pages to and from disk

Chapter 4 26CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Separate I & D address spaces

One user address space for
both data & code

Simpler
Code/data separation harder
to enforce
More address space?

One address space for data,
another for code

Code & data separated
More complex in hardware
Less flexible
CPU must handle instructions
& data differently

C
od

e
D

at
a

0

232-1

C
od

e

D
at

a

Instructions Data

Chapter 4 27CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Sharing pages

Processes can share pages
Entries in page tables point to the same physical page
frame
Easier to do with code: no problems with modification

Virtual addresses in different processes can be…
The same: easier to exchange pointers, keep data
structures consistent
Different: may be easier to actually implement

Not a problem if there are only a few shared regions
Can be very difficult if many processes share regions with each
other

Chapter 4 28CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

When are dirty pages written to disk?

On demand (when they’re replaced)
Fewest writes to disk
Slower: replacement takes twice as long (must wait for
disk write and disk read)

Periodically (in the background)
Background process scans through page tables, writes out
dirty pages that are pretty old

Background process also keeps a list of pages ready
for replacement

Page faults handled faster: no need to find space on
demand
Cleaner may use the same structures discussed earlier
(clock, etc.)

Chapter 4 29CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Implementation issues

Four times when OS involved with paging
Process creation

Determine program size
Create page table

During process execution
Reset the MMU for new process
Flush the TLB (or reload it from saved state)

Page fault time
Determine virtual address causing fault
Swap target page out, needed page in

Process termination time
Release page table
Return pages to the free pool

Chapter 4 30CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

How is a page fault handled?

Hardware causes a page
fault
General registers saved (as
on every exception)
OS determines which
virtual page needed

Actual fault address in a
special register
Address of faulting
instruction in register

Page fault was in fetching
instruction, or
Page fault was in fetching
operands for instruction
OS must figure out which…

OS checks validity of address
Process killed if address was illegal

OS finds a place to put new page
frame
If frame selected for replacement is
dirty, write it out to disk
OS requests the new page from disk
Page tables updated
Faulting instruction backed up so it
can be restarted
Faulting process scheduled
Registers restored
Program continues



6

Chapter 4 31CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Backing up an instruction

Problem: page fault happens in the middle of instruction execution
Some changes may have already happened
Others may be waiting for VM to be fixed

Solution: undo all of the changes made by the instruction
Restart instruction from the beginning
This is easier on some architectures than others

Example: LW R1, 12(R2)
Page fault in fetching instruction: nothing to undo
Page fault in getting value at 12(R2): restart instruction

Example: ADD (Rd)+,(Rs1)+,(Rs2)+
Page fault in writing to (Rd): may have to undo an awful lot…

Chapter 4 32CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Locking pages in memory

Virtual memory and I/O occasionally interact
P1 issues call for read from device into buffer

While it’s waiting for I/O, P2 runs
P2 has a page fault
P1’s I/O buffer might be chosen to be paged out

This can create a problem because an I/O device is going to write
to the buffer on P1’s behalf

Solution: allow some pages to be locked into
memory

Locked pages are immune from being replaced
Pages only stay locked for (relatively) short periods

Chapter 4 33CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Storing pages on disk

Pages removed from memory are stored on disk
Where are they placed?

Static swap area: easier to code, less flexible
Dynamically allocated space: more flexible, harder to locate a page

Dynamic placement often uses a special file (managed by the file system) to hold pages

Need to keep track of which pages are where within the on-disk storage

Chapter 4 34CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt)

Separating policy and mechanism

Mechanism for page replacement has to be in kernel
Modifying page tables
Reading and writing page table entries

Policy for deciding which pages to replace could be in user
space

More flexibility

User
space

Kernel
space

User
process

1. Page fault
Fault

handler
MMU
handler

External
pager2. Page needed

3. Request page

5. Here is page!

4. Page
arrives

6. Map in page


