ENGINEERING STAFF COLLEGE OF INDIA

DIGITAL IMAGE PROCESSING WAVELETS

Chakravarthy Bhagvati Dept. of Computer and Information Sciences University of Hyderabad

OVERVIEW

- Introduction
 - ... in Pictures
 - ... in Detail and Rigour
- Wavelets in Image Processing
 - \circ Multi-resolution analysis
 - \circ Compression
 - \circ Texture analysis, esp., segmentation
 - Watermarking and Steganography
 - \circ Many, Many More \ldots
- Conclusions

AN IMPORTANT QUESTION

- Given a signal (or an image), find out which frequencies are present and **find out where they are located**
 - Fourier analysis finds out the frequencies present but does not give any indication about their locations
- What do we need?
 - A set of functions that represent different frequencies (in case of Fourier analysis, they are sines and cosines of various frequencies)
 - Functions with a finite extent (sines and cosines have infinite extent) location is identified by a translation parameter
- Where do we need such a decomposition?
 - texture segmentation
 - \circ object identification
 - \circ clustering

A SECOND QUESTION

It is always possible to go from a high-resolution signal to a low-resolution signal, but ...

... is it possible to go from a low-resolution to a high-resolution signal?

• One possible solution: represent efficiently the information lost in the low-resolution image and add it later

So, the question is again one of representation!

... in Pictures

HAAR WAVELETS

... in Detail and Rigour

TANGRAMS

Tangrams is an ancient Chinese game where a player makes a variety of shapes using 7 standard pieces

Now, let us go to mathematics and formalize the concepts in tangrams.

- Each piece is thought of as a function, $\phi_k(x)$
- Each shape is a combination of such functions

Any arbitrary function may be spatially decomposed as

 $f(x) = \sum_{k} \alpha_k \phi_k(x)$

where α_k and $\phi_k(x)$ are real-valued coefficients and functions. If the expansion is unique, i.e., there is only one set of α_k for any given function f(x), then $\{\phi_k(x)\}$ forms a basis and $\phi_k(x)$ is a basis function.

Tangram puzzle is all about finding α_k that represent position and rotation angle through which each $\phi_k(x)$ should be transformed for forming a given shape!

SPANS AND SPACES

$$V = \overline{\operatorname{Span}_k\{\phi_k(x)\}}$$

• $f(x) \in V$ means that f(x) is expressible as a linear combination of basis functions $\phi_k(x)$

In tangrams, span is the set of all shapes that can be made with the 7 pieces. An example of a shape that is not in such a span or does not belong to the space of shapes is a circle.

ORTHONORMAL BASIS

There also exist a set of dual functions $\hat{\phi}_k(x)$ such that

$$\alpha_k = \int \hat{\phi}_k^*(x) f(x) dx \tag{1}$$

where * indicates the complex conjugate. Real-valued functions are their own complex conjugates.

If the basis functions are orthonormal, i.e.,

$$\phi_j(x) \cdot \phi_k(x) = \begin{cases} 0, \text{ if } j \neq k\\ 1, \text{ if } j = k \end{cases}$$

then $\phi_k(x)$ is its own dual.

We can see that Fourier Series is a special case of orthonormal expansions. Fourier series gets the frequency interpretation because its basis functions $e^{j2\pi ux}$ represent sinusoids through the well-known equation $e^{jx} = \cos x + j \sin x$.

SCALING FUNCTIONS

Let us now talk about choosing good $\phi_k(x)$. Define a family of scaled, integer translated versions of a single variable function, $\phi(x)$, as

$$\phi_{j,k}(x) = 2^{j/2}\phi(2^jx - k)$$

• How many basis functions are there in tangrams?

• Three (Square, trapezium and triangle)

• Five scaled versions of triangle — two small triangles, one scaled by a factor of 2, and two others scaled by a factor of 4 each

• The space spanned by scaling functions for a particular scale coefficient $j = j_0$ is denoted by V_0 .

We find that the functions get finer and finer as j increases. This forms the foundation of multiresolution analysis.

MALLAT'S SCALING CRITERIA

- 1. Scaling function is orthogonal to its integer translates
- 2. The subspaces spanned for different j should be nested

$$V_{-\infty} \subset \ldots \subset V_0 \subset V_1 \ldots \subset V_\infty$$

- 3. The only function common to all subspaces is f(x) = 0
- 4. Any function can be represented with arbitrary precision

If these criteria are met, then a function at lower resolution jmay be represented by a function at a higher resolution as

$$\phi_{j,k}(x) = \sum_{n} h_{\phi}(n)\phi_{j+1,n}(x)$$

= $\sum_{n} h_{\phi}(n)2^{(j+1)/2}\phi(2^{j+1}x - n)$
since $\phi(x) = \phi_{0,0}(x)$,
 $\phi(x) = \sum_{n} h_{\phi}(n)\sqrt{2}\phi(2x - n)$

 $h_{\phi}(n)$ are called scaling function coefficients.

WAVELET FUNCTIONS

Wavelet functions form the basis for the difference space between two adjacently scaled subspaces Let W_0 define the difference between V_j and V_{j+1} . If the set of functions,

$$\psi_{j,k}(x) = 2^{j/2}\psi(2^j - k)$$

form the basis for W_0 , then the functions $\psi_{j,k}(x)$ are called wavelet functions and

$$V_{j+1} = V_j \oplus W_j$$

If $L^2(R)$ represents the space spanned by all the square-integrable real-valued functions, then it is possible to write

 $L^2(R) = V_0 \oplus W_0 \oplus W_1 \oplus W_2 \oplus \ldots$

WAVELET FUNCTIONS...

The previous equation may be generalized to yield

$$L^2(R) = V_{j_0} \oplus W_{j_0} \oplus W_{j_0+1} \oplus \ldots$$

where j_0 is an arbitrary starting scale or starting resolution.

Wavelet functions may be scaled and integer translated from a single basic wavelet as

$$\psi(x) = \sum h_{\psi}(n)\sqrt{2}\phi(2x-n)$$

Wavelets may also be obtained from scaling functions of the subspaces V_j

$$h_{\psi}(n) = (-1)^n h_{\phi}(1-n)$$

Take a look at our multiresolution equation again

 $L^2(R) = V_{j_0} \oplus W_{j_0} \oplus W_{j_0+1} \oplus \dots$

Thus, any arbitrary function f(x) may be expressed as

$$f(x) = \sum_{k} c_{j_0}(k)\phi_{j_0,k}(x) + \sum_{j=j_0}^{\infty} \sum_{k} d_j(k)\psi_{j,k}(x)$$

 $c_{j_0}(k)$ are called the approximation or scaling coefficients and $d_j(k)$ are called the wavelet coefficients.

If orthonormal basis functions are used, then

$$c_{j_0}(k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \phi_{j_0,k}(x) dx$$
$$d_j(k) = \frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j,k}(x) dx$$

- \bullet Under wavelet transforms, any function f(x) is expressed as a sum of an approximation of f(x) and its highlights
- Approximation is represented as a linear combination of functions $\phi(x),$ its scaled and translated versions $\phi_{j,k}(x)$
- \bullet Highlights are represented as a linear combination of functions $\psi(x),$ its scaled and translated versions $\psi_{j,k}(x)$

Normally,

$$\phi_{j,k}(x) = 2^{\frac{j}{2}} \phi(2^{j}x - k)$$

$$\psi_{j,k}(x) = 2^{\frac{j}{2}} \psi(2^{j}x - k)$$

Even more beautifully, if $\phi(x)$ is chosen carefully, then $\psi(x)$ is itself derivable from $\phi(x)$ $\phi(x)$ is called the **mother wavelet**

18

WAVELET TRANSFORM (1-D)

• Wavelet transform is given by

$$f(x) = \sum_{k} c_{j_0}(k)\phi_{j_0,k}(x) + \sum_{j=j_0}^{\infty} \sum_{k} d_j(k)\psi_{j,k}(x)$$

- The first expression is the approximation at scale j_0
- \bullet The second represents the details up to any arbitrary scale j
- $c_{j_0}(k)$ are the scaling or approximation coefficients
- $d_j(k)$ are the wavelet coefficients

SIMPLE EXAMPLE USING HAAR WAVELETS

- The main difference from 1-D version is that the highlights come in three components horizontal, vertical and diagonal
- Wavelet transform (2D)

 $f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} c_{j_0}(m,n)\phi_{j_0,m,n}(x,y) + \frac{1}{\sqrt{MN}} \sum_{i=H,V,D} \sum_{j=j_0}^{\infty} \sum_{m} \sum_{n} d_j(m,n)\psi_{j,m,n}^i(x,y)$ Directionally sensitive wavelets $\psi^H(x,y) = \psi(x)\phi(y)$ $\psi^V(x,y) = \phi(x)\psi(y)$ $\psi^D(x,y) = \psi(x)\psi(y)$

 $\psi_{i.m.n}^V(x,y) = \psi_{i.m.n}^D(x,y)$

WAVELET TRANSFORM EXAMPLE

WAVELET TRANSFORM (ANOTHER EXAMPLE)

MORE EXAMPLES

MORE EXAMPLES

MORE EXAMPLES

Figure 7: Toon 0111

CONCLUSION

- Wavelets caused a revolution in signal processing during 1990s because of their wonderful properties
- Wavelets unified a number of previous approaches such as multiresolution analysis, subband coding, Haar Transforms
- Wavelets are applied everywhere from image classification to compression to steganography and watermarking
- Essentially, wavelets once again demonstrate the power of a good, clean, rigorous and efficient representation
- Don't shun mathematics!