ENGINEERING STAFF COLLEGE OF INDIA

DIGITAL IMAGE PROCESSING WAVELETS

Chakravarthy Bhagvati
Dept. of Computer and Information Sciences
University of Hyderabad

OVERVIEW

- Introduction

> ... in Pictures
... in Detail and Rigour

- Wavelets in Image Processing
- Multi-resolution analysis
- Compression
- Texture analysis, esp., segmentation
- Watermarking and Steganography
- Many, Many More . . .
- Conclusions

AN IMPORTANT QUESTION

- Given a signal (or an image), find out which frequencies are present and find out where they are located
- Fourier analysis finds out the frequencies present but does not give any indication about their locations
- What do we need?
- A set of functions that represent different frequencies (in case of Fourier analysis, they are sines and cosines of various frequencies)
- Functions with a finite extent (sines and cosines have infinite extent) - location is identified by a translation parameter
- Where do we need such a decomposition?
- texture segmentation
- object identification
- clustering

A SECOND QUESTION

It is always possible to go from a high-resolution signal to a lowresolution signal, but ...
... is it possible to go from a low-resolution to a high-resolution signal?

- One possible solution: represent efficiently the information lost in the low-resolution image and add it later
- So, the question is again one of representation!

... in Pictures

AN EXAMPLE

HAAR WAVELETS

$$
f(x)=3 \frac{\sqrt{2}}{4} \phi(x)-\frac{\sqrt{2}}{8} \phi(x-2)-\frac{\sqrt{2}}{4} \psi(x)-\frac{\sqrt{2}}{8} \psi(x-2)
$$

... in Detail and Rigour

TANGRAMS

Tangrams is an ancient Chinese game where a player makes a variety of shapes using 7 standard pieces

Chakravarthy Bhagvati (2007)

BASIS FUNCTIONS AND COMBINATIONS

Now, let us go to mathematics and formalize the concepts in tangrams.

- Each piece is thought of as a function, $\phi_{k}(x)$
- Each shape is a combination of such functions

Any arbitrary function may be spatially decomposed as

$$
f(x)=\sum_{k} \alpha_{k} \phi_{k}(x)
$$

where α_{k} and $\phi_{k}(x)$ are real-valued coefficients and functions.
If the expansion is unique, i.e., there is only one set of α_{k} for any given function $f(x)$, then $\left\{\phi_{k}(x)\right\}$ forms a basis and $\phi_{k}(x)$ is a basis function.
Tangram puzzle is all about finding α_{k} that represent position and rotation angle through which each $\phi_{k}(x)$ should be transformed for forming a given shape!

SPANS AND SPACES

- The set of functions that can be expressed as a linear combination of basis functions is called the span of the basis functions, and they form a space V denoted by

$$
V=\overline{\operatorname{Span}_{k}\left\{\phi_{k}(x)\right\}}
$$

- $f(x) \in V$ means that $f(x)$ is expressible as a linear combination of basis functions $\phi_{k}(x)$
In tangrams, span is the set of all shapes that can be made with the
7 pieces. An example of a shape that is not in such a span or does not belong to the space of shapes is a circle.

ORTHONORMAL BASIS

There also exist a set of dual functions $\hat{\phi}_{k}(x)$ such that

$$
\begin{equation*}
\alpha_{k}=\int \hat{\phi}_{k}^{*}(x) f(x) d x \tag{1}
\end{equation*}
$$

where $*$ indicates the complex conjugate. Real-valued functions are their own complex conjugates.
If the basis functions are orthonormal, i.e.,

$$
\phi_{j}(x) \cdot \phi_{k}(x)=\left\{\begin{array}{l}
0, \text { if } j \neq k \\
1, \text { if } j=k
\end{array}\right.
$$

then $\phi_{k}(x)$ is its own dual.
We can see that Fourier Series is a special case of orthonormal expansions. Fourier series gets the frequency interpretation because its basis functions $e^{j 2 \pi u x}$ represent sinusoids through the well-known equation $e^{j x}=\cos x+j \sin x$.

SCALING FUNCTIONS

Let us now talk about choosing good $\phi_{k}(x)$.
Define a family of scaled, integer translated versions of a single variable function, $\phi(x)$, as

$$
\phi_{j, k}(x)=2^{j / 2} \phi\left(2^{j} x-k\right)
$$

- How many basis functions are there in tangrams?
- Three (Square, trapezium and triangle)
- Five scaled versions of triangle - two small triangles, one scaled by a factor of 2 , and two others scaled by a factor of 4 each
- The space spanned by scaling functions for a particular scale coefficient $j=j_{0}$ is denoted by V_{0}.
We find that the functions get finer and finer as j increases. This forms the foundation of multiresolution analysis.

MALLAT'S SCALING CRITERIA

1. Scaling function is orthogonal to its integer translates
2. The subspaces spanned for different j should be nested

$$
V_{-\infty} \subset \ldots \subset V_{0} \subset V_{1} \ldots \subset V_{\infty}
$$

3. The only function common to all subspaces is $f(x)=0$
4. Any function can be represented with arbitrary precision

If these criteria are met, then a function at lower resolution j may be represented by a function at a higher resolution as

$$
\begin{aligned}
\phi_{j, k}(x) & =\sum_{n} h_{\phi}(n) \phi_{j+1, n}(x) \\
& =\sum_{n} h_{\phi}(n) 2^{(j+1) / 2} \phi\left(2^{j+1} x-n\right) \\
\text { since } \phi(x) & =\phi_{0,0}(x), \\
\phi(x) & =\sum_{n} h_{\phi}(n) \sqrt{2} \phi(2 x-n)
\end{aligned}
$$

$h_{\phi}(n)$ are called scaling function coefficients.

WAVELET FUNCTIONS

Wavelet functions form the basis for the difference space between two adjacently scaled subspaces
Let W_{0} define the difference between V_{j} and V_{j+1}. If the set of functions,

$$
\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j}-k\right)
$$

form the basis for W_{0}, then the functions $\psi_{j, k}(x)$ are called wavelet functions and

$$
V_{j+1}=V_{j} \oplus W_{j}
$$

If $L^{2}(R)$ represents the space spanned by all the square-integrable real-valued functions, then it is possible to write

$$
L^{2}(R)=V_{0} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \ldots
$$

WAVELET FUNCTIONS. . .

The previous equation may be generalized to yield

$$
L^{2}(R)=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus \ldots
$$

where j_{0} is an arbitrary starting scale or starting resolution.

Wavelet functions may be scaled and integer translated from a sin-- gle basic wavelet as

$$
\psi(x)=\Sigma h_{\psi}(n) \sqrt{2} \phi(2 x-n)
$$

Wavelets may also be obtained from scaling functions of the subspaces V_{j}

$$
h_{\psi}(n)=(-1)^{n} h_{\phi}(1-n)
$$

WAVELET TRANSFORMS

Take a look at our multiresolution equation again

$$
L^{2}(R)=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus \ldots
$$

Thus, any arbitrary function $f(x)$ may be expressed as

$$
f(x)=\sum_{k} c_{j_{0}}(k) \phi_{j_{0}, k}(x)+\sum_{j=j_{0}}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x)
$$

$c_{j_{0}}(k)$ are called the approximation or scaling coefficients and $d_{j}(k)$ are called the wavelet coefficients.
If orthonormal basis functions are used, then

$$
\begin{aligned}
c_{j_{0}}(k) & =\frac{1}{\sqrt{M}} \sum_{x} f(x) \phi_{j_{0}, k}(x) d x \\
d_{j}(k) & =\frac{1}{\sqrt{M}} \sum f(x) \psi_{j, k}(x) d x
\end{aligned}
$$

PUTTING IT ALL TOGETHER

- Under wavelet transforms, any function $f(x)$ is expressed as a sum of an approximation of $f(x)$ and its highlights
- Approximation is represented as a linear combination of functions $\phi(x)$, its scaled and translated versions $\phi_{j, k}(x)$
- Highlights are represented as a linear combination of functions $\psi(x)$, its scaled and translated versions $\psi_{j, k}(x)$
Normally,

$$
\begin{aligned}
\phi_{j, k}(x) & =2^{\frac{j}{2}} \phi\left(2^{j} x-k\right) \\
\psi_{j, k}(x) & =2^{\frac{j}{2}} \psi\left(2^{j} x-k\right)
\end{aligned}
$$

Even more beautifully, if $\phi(x)$ is chosen carefully, then $\psi(x)$ is itself derivable from $\phi(x)$
$\phi(x)$ is called the mother wavelet

WAVELET TRANSFORM (1-D)

- Wavelet transform is given by

$$
f(x)=\sum_{k} c_{j_{0}}(k) \phi_{j_{0}, k}(x)+\sum_{j=j_{0}}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x)
$$

- The first expression is the approximation at scale j_{0}
- The second represents the details upto any arbitrary scale j
- $c_{j_{0}}(k)$ are the scaling or approximation coefficients
- $d_{j}(k)$ are the wavelet coefficients

SIMPLE EXAMPLE USING HAAR WAVELETS

- Haar wavelets are given by

- Consider the 1-D function below

- Analysis step

- Synthesis step
\square

WAVELET TRANSFORM IN 2-D

- The main difference from 1-D version is that the highlights come in three components - horizontal, vertical and diagonal
- Wavelet transform (2D)

$$
\begin{aligned}
f(x, y)= & \frac{1}{\sqrt{M N}} \sum_{m} \sum_{n} c_{j_{0}}(m, n) \phi_{j_{0}, m, n}(x, y)+ \\
& \frac{1}{\sqrt{M N}} i=\sum_{H, V, D} \sum_{j=\sum_{0}}^{\infty} \sum_{m} \sum_{n} d_{j}(m, n) \psi_{j, m, n}^{i}(x, y)
\end{aligned}
$$

Directionally sensitive wavelets

$$
\begin{aligned}
& \psi^{H}(x, y)=\psi(x) \phi(y) \\
& \psi^{V}(x, y)=\phi(x) \psi(y) \\
& \psi^{D}(x, y)=\psi(x) \psi(y)
\end{aligned}
$$

$$
\begin{array}{l|l}
\phi_{j_{0}, m, n}(x, y) & \psi_{j, m, n}^{H}(x, y) \\
\hline \psi_{j, m, n}^{V}(x, y) & \psi_{j, m, n}^{D}(x, y)
\end{array}
$$

WAVELET TRANSFORM EXAMPLE

Chakravarthy Bhagvati (2007)

MORE EXAMPLES

Chakravarthy Bhagvati (2007)

MORE EXAMPLES

Chakravarthy Bhagvati (2007)

MORE EXAMPLES

Figure 7: Toon 0111

CONCLUSION

- Wavelets caused a revolution in signal processing during 1990s because of their wonderful properties
- Wavelets unified a number of previous approaches such as multiresolution analysis, subband coding, Haar Transforms
- Wavelets are applied everywhere from image classification to compression to steganography and watermarking
- Essentially, wavelets once again demonstrate the power of a good, clean, rigorous and efficient representation
- Don't shun mathematics!

