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AN IMPORTANT QUESTION

• Given a signal (or an image), find out which frequencies are
present and find out where they are located

◦ Fourier analysis finds out the frequencies present but does not
give any indication about their locations

• What do we need?

◦ A set of functions that represent different frequencies (in case of
Fourier analysis, they are sines and cosines of various frequen-
cies)

◦ Functions with a finite extent (sines and cosines have infinite
extent) — location is identified by a translation parameter

• Where do we need such a decomposition?

◦ texture segmentation

◦ object identification

◦ clustering
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A SECOND QUESTION

It is always possible to go from a high-resolution signal to a low-
resolution signal, but . . .

. . . is it possible to go from a low-resolution to a high-resolution
signal?

• One possible solution: represent efficiently the information lost in
the low-resolution image and add it later

So, the question is again one of representation!
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. . . in Pictures
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AN EXAMPLE
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HAAR WAVELETS
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. . . in Detail and Rigour
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TANGRAMS

Tangrams is an ancient Chinese
game where a player makes a va-
riety of shapes using 7 standard
pieces
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BASIS FUNCTIONS AND COMBINATIONS

Now, let us go to mathematics and formalize the concepts in tan-
grams.

• Each piece is thought of as a function, φk(x)

• Each shape is a combination of such functions

Any arbitrary function may be spatially decomposed as

f (x) =
∑

k
αkφk(x)

where αk and φk(x) are real-valued coefficients and functions.
If the expansion is unique, i.e., there is only one set of αk for any
given function f (x), then {φk(x)} forms a basis and φk(x) is a basis
function.
Tangram puzzle is all about finding αk that represent position and
rotation angle through which each φk(x) should be transformed for
forming a given shape!
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SPANS AND SPACES

• The set of functions that can be expressed as a linear combination
of basis functions is called the span of the basis functions, and
they form a space V denoted by

V = Spank{φk(x)}
• f (x) ∈ V means that f (x) is expressible as a linear combination

of basis functions φk(x)

In tangrams, span is the set of all shapes that can be made with the
7 pieces. An example of a shape that is not in such a span or does
not belong to the space of shapes is a circle.
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ORTHONORMAL BASIS

There also exist a set of dual functions φ̂k(x) such that

αk =
∫

φ̂∗k(x)f (x)dx (1)

where ∗ indicates the complex conjugate. Real-valued functions are
their own complex conjugates.
If the basis functions are orthonormal, i.e.,

φj(x) · φk(x) =



















0, if j 6= k
1, if j = k

then φk(x) is its own dual.
We can see that Fourier Series is a special case of orthonormal ex-
pansions. Fourier series gets the frequency interpretation because
its basis functions ej2πux represent sinusoids through the well-known
equation ejx = cos x + j sinx.
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SCALING FUNCTIONS

Let us now talk about choosing good φk(x).
Define a family of scaled, integer translated versions of a single vari-
able function, φ(x), as

φj,k(x) = 2j/2φ(2jx− k)

• How many basis functions are there in tangrams?

◦ Three (Square, trapezium and triangle)

◦ Five scaled versions of triangle — two small triangles, one
scaled by a factor of 2, and two others scaled by a factor of
4 each

• The space spanned by scaling functions for a particular scale co-
efficient j = j0 is denoted by V0.

We find that the functions get finer and finer as j increases. This
forms the foundation of multiresolution analysis.
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MALLAT’S SCALING CRITERIA

1. Scaling function is orthogonal
to its integer translates

2. The subspaces spanned for dif-
ferent j should be nested

V−∞ ⊂ . . . ⊂ V0 ⊂ V1 . . . ⊂ V∞

3. The only function common to
all subspaces is f (x) = 0

4. Any function can be repre-
sented with arbitrary precision

If these criteria are met, then
a function at lower resolution j
may be represented by a function
at a higher resolution as

φj,k(x) =
∑

n
hφ(n)φj+1,n(x)

=
∑

n
hφ(n)2(j+1)/2φ(2j+1x− n)

since φ(x) = φ0,0(x),

φ(x) =
∑

n
hφ(n)

√
2φ(2x− n)

hφ(n) are called scaling function
coefficients.
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WAVELET FUNCTIONS

Wavelet functions form the basis for the difference space between
two adjacently scaled subspaces
Let W0 define the difference between Vj and Vj+1. If the set of func-
tions,

ψj,k(x) = 2j/2ψ(2j − k)

form the basis for W0, then the functions ψj,k(x) are called wavelet
functions and

Vj+1 = Vj ⊕Wj

If L2(R) represents the space spanned by all the square-integrable
real-valued functions, then it is possible to write

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ . . .
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WAVELET FUNCTIONS. . .

The previous equation may be generalized to yield

L2(R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . .

where j0 is an arbitrary starting scale or starting resolution.

Wavelet functions may be scaled
and integer translated from a sin-
gle basic wavelet as

ψ(x) =
∑

hψ(n)
√

2φ(2x− n)

Wavelets may also be obtained
from scaling functions of the sub-
spaces Vj

hψ(n) = (−1)nhφ(1 − n)
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WAVELET TRANSFORMS

Take a look at our multiresolution equation again

L2(R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . .

Thus, any arbitrary function f (x) may be expressed as

f (x) =
∑

k
cj0(k)φj0,k(x) +

∞
∑

j=j0

∑

k
dj(k)ψj,k(x)

cj0(k) are called the approximation or scaling coefficients and dj(k)
are called the wavelet coefficients.
If orthonormal basis functions are used, then

cj0(k) =
1√
M

∑

x
f (x)φj0,k(x)dx

dj(k) =
1√
M

∑

f (x)ψj,k(x)dx
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PUTTING IT ALL TOGETHER

• Under wavelet transforms, any function f (x) is expressed as a sum
of an approximation of f (x) and its highlights

• Approximation is represented as a linear combination of functions
φ(x), its scaled and translated versions φj,k(x)

• Highlights are represented as a linear combination of functions
ψ(x), its scaled and translated versions ψj,k(x)

Normally,

φj,k(x) = 2
j
2φ(2jx− k)

ψj,k(x) = 2
j
2ψ(2jx− k)

Even more beautifully, if φ(x) is chosen carefully, then ψ(x) is itself
derivable from φ(x)
φ(x) is called the mother wavelet
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WAVELET TRANSFORM (1-D)

• Wavelet transform is given by

f (x) =
∑

k
cj0(k)φj0,k(x) +

∞
∑

j=j0

∑

k
dj(k)ψj,k(x)

• The first expression is the approximation at scale j0

• The second represents the details upto any arbitrary scale j

• cj0(k) are the scaling or approximation coefficients

• dj(k) are the wavelet coefficients

c (n) 2 2 c (n)

d (n) 2 2 d (n)

f(x) f(x)+Analysis Synthesis
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SIMPLE EXAMPLE USING HAAR WAVELETS

• Haar wavelets are given by
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• Consider the 1-D function be-
low

• Analysis step

• Synthesis step
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WAVELET TRANSFORM IN 2-D

• The main difference from 1-D version is that the highlights come
in three components – horizontal, vertical and diagonal

• Wavelet transform (2D)

f (x, y) =
1√
MN

∑

m

∑

n
cj0(m,n)φj0,m,n(x, y) +

1√
MN

∑

i=H,V,D

∞
∑

j=j0

∑

m

∑

n
dj(m,n)ψij,m,n(x, y)

Directionally sensitive wavelets

ψH(x, y) = ψ(x)φ(y)

ψV (x, y) = φ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y)

φj0,m,n(x, y) ψHj,m,n(x, y)

ψVj,m,n(x, y) ψDj,m,n(x, y)
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WAVELET TRANSFORM EXAMPLE
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WAVELET TRANSFORM (ANOTHER EXAMPLE)
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MORE EXAMPLES
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MORE EXAMPLES
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MORE EXAMPLES
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CONCLUSION

• Wavelets caused a revolution in signal processing during 1990s
because of their wonderful properties

• Wavelets unified a number of previous approaches such as mul-
tiresolution analysis, subband coding, Haar Transforms

• Wavelets are applied everywhere from image classification to
compression to steganography and watermarking

• Essentially, wavelets once again demonstrate the power of a good,
clean, rigorous and efficient representation

• Don’t shun mathematics!
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