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e Introduction
...1n Pictures
...1n Detail and Rigour

e Wavelets in Image Processing

o Multi-resolution analysis
1 o Compression
§  oTexture analysis, esp., segmentation
] © Watermarking and Steganography
o Many, Many More ...

I e Conclusions
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III AN IMPORTANT QUESTION

e Given a signal (or an image), find out which frequencies are
present and find out where they are located

o Fourier analysis finds out the frequencies present but does not
give any indication about their locations

e What do we need?

o A set of functions that represent different frequencies (in case of
Fourier analysis, they are sines and cosines of various frequen-
cies)

o Functions with a finite extent (sines and cosines have infinite
extent) — location is identified by a translation parameter

e Where do we need such a decomposition?

o texture segmentation
o object identification
o clustering
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III A SECOND QUESTION

It is always possible to go from a high-resolution signal to a low-
resolution signal, but ...

...1s it possible to go from a low-resolution to a high-resolution
signal?

e One possible solution: represent efficiently the information lost in
the low-resolution image and add it later

} So, the question is again one of representation!
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. .. 1n Pictures
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HAAR WAVELETS
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...in Detail and Rigour
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Tangrams is an ancient Chinese
game where a player makes a va-
riety of shapes using 7 standard
pieces

4
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“l BASIS FUNCTIONS AND COMBINATIONS

Now, let us go to mathematics and formalize the concepts in tan-
grams.

e Each piece is thought of as a function, ¢ (x)
e Each shape is a combination of such functions
Any arbitrary function may be spatially decomposed as

. f(2) = S axdn()

where oy, and ¢y (x) are real-valued coefficients and functions.

If the expansion is unique, i.e., there is only one set of «; for any
I given function f(x), then {¢;(x)} forms a basis and ¢, () is a basis

function.

Tangram puzzle is all about finding «; that represent position and

rotation angle through which each ¢, () should be transformed for

forming a given shape!
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III SPANS AND SPACES

e The set of functions that can be expressed as a linear combination
of basis functions is called the span of the basis functions, and
they form a space V' denoted by

V' = Span,{¢y(v)}

e f(x) € V means that f(x) is expressible as a linear combination

I of basis functions o)

I tangrams, span is the set of all shapes that can be made with the
i 7 pieces. An example of a shape that is not in such a span or does
not belong to the space of shapes is a circle.
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“l ORTHONORMAL BASIS

There also exist a set of dual functions ¢;(x) such that

ap = [ ¢(z) f(z)dw (1)

where * indicates the complex conjugate. Real-valued functions are
their own complex conjugates.
If the basis functions are orthonormal, i.e.,

(0, ifj AR

1
1 ¢j(x) - pp(x) = 1, ifj =k

I then ¢r(x) is its own dual.

I We can see that Fourier Series is a special case of orthonormal ex-
pansions. Fourier series gets the frequency interpretation because
its basis functions e/*™** represent sinusoids through the well-known
equation e/* = cosz + j sin .
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Let us now talk about choosing good ¢ (x).
Define a family of scaled, integer translated versions of a single vari-
able function, ¢(x), as

b x(w) = 2120(2x — k)
e How many basis functions are there in tangrams?

o Three (Square, trapezium and triangle)

1

}  oFive scaled versions of triangle — two small triangles, one

I scaled by a factor of 2, and two others scaled by a factor of
4 each

1

e The space spanned by scaling functions for a particular scale co-
efficient y = j, is denoted by V4.

We find that the functions get finer and finer as j increases. This
forms the foundation of multiresolution analysis.
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1. Scaling function is orthogonal
to its integer translates

2. The subspaces spanned for dif-
ferent 5 should be nested

V_oC...CVoCVi...CV,

3. The only function common to
all subspaces is f(x) =0

4. Any function can be repre-
sented with arbitrary precision
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MALLAT’S SCALING CRITERIA

If these criteria are met, then
a function at lower resolution j
may be represented by a function
at a higher resolution as

Gik(x) = X ho(n)dji1n(z)
=X ho(n)2U 227 — )
since ¢(x) = ¢oo(z),
o(x) = ¥ hy(n)V206(2z —n)

hs(n) are called scaling function
coefficients.



Wavelet functions form the basis for the difference space between
two adjacently scaled subspaces
Let W, define the difference between V; and V. If the set of func-

tions, | |
(z) = 2%9(2 — k)
form the basis for W, then the functions v; ;(x) are called wavelet
] functions and

i Vise=V; & W;
If L°(R) represents the space spanned by all the square-integrable
real-valued functions, then it is possible to write

] LR =VieoWoo W, oWed ...
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The previous equation may be generalized to yield
LQ(R) — V}'o D Wjo D Wjo+1 D ...

where j, is an arbitrary starting scale or starting resolution.

IWavelet functions may be scaled
and integer translated from a sin-
} gle basic wavelet as

I (@) = Shy(n)v26(2z — n)

| Wavelets may also be obtained
from scaling functions of the sub-
spaces V/;

hy(n) = (—=1)"hg(1 — n)
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“l WAVELET TRANSFORMS

Take a look at our multiresolution equation again
LQ(R) — ‘/}o D Wjo D Wj0+1 D ...

Thus, any arbitrary function f(x) may be expressed as
fla) =3 cjy(k)@j () + ;Zj.o S dj(k)jk()

I cj,(k) are called the approximation or scaling coefficients and d;(k)
§ are called the wavelet coefficients.
I If orthonormal basis functions are used, then

I Cj()(k) — \/1M§f(x)¢30,k(x)dx
d;(k) = ﬁzf(w)lbj,k(x)dx
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III PUTTING IT ALL TOGETHER

e Under wavelet transforms, any function f(x) is expressed as a sum
of an approximation of f(x) and its highlights

e Approximation is represented as a linear combination of functions
¢(x), its scaled and translated versions ¢, ()

e Highlights are represented as a linear combination of functions
] ¢(x), its scaled and translated versions v; (z)

I Normally,

i dirn(x) = 2%¢(2{:c — k)
I Yin(a) = 29(Px — k)
Even more beautifully, if ¢(x) is chosen carefully, then (z) is itself

derivable from ¢(x)
¢(x) is called the mother wavelet

7)
v)
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l“ WAVELET TRANSFORM (1-D)

e Wavelet transform is given by
fla) =3 cjy(k) @) 1) + ;Zj.o > dj(k)ibjn(x)

e The first expression is the approximation at scale j,

e The second represents the details upto any arbitrary scale j
e c; (k) are the scaling or approximation coefficients
e d,(k) are the wavelet coefficients

¢ (n) 2y 24 ¢ (n)
F(x) — Anaysis Synthesis (x)
d () 24 24 d (n)

= = = = T

Chakravarthy Bhagvati (2007)



e Haar wavelets are given by

1!

;;;;;;;;;;;;;;;;; |

0 1 2 3 0 1 2 3

' Haar Function @(x) ‘ Hgar Function g (x)

e Consider the 1-D function be-

i
I low
i
i

e Analysis step
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SIMPLE EXAMPLE USING HAAR WAVELETS

e Synthesis step




III WAVELET TRANSFORM IN 2-D

e The main difference from 1-D version is that the highlights come
in three components — horizontal, vertical and diagonal

e Wavelet transform (2D)

1
f(xa y) — \/W 7721 % Cj()(mv n)¢jo,m,n<xa y) -
1

> Y yydim,n)t (x,y)

1
I vV M N i=HV,D j=j,mn J.mn
1
1

Directionally sensitive wavelets
H
Dz, y) = ¥(2)b(y) GjomnlT,Y) Ui (T, Y)

(2, y) = d(x)(y)
VP (z,y) = P(x)(y)

Xm,n@j’ y> jl',)m,n(xv y)
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WAVELET TRANSFORM EXAMPLE
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[ ]| wavELET TRANSFORM (ANOTHER ExAMPLE) [ :
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MORE EXAMPLES
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MORE EXAMPLES
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e Wavelets caused a revolution in signal processing during 1990s
because of their wonderful properties

e Wavelets unified a number of previous approaches such as mul-
tiresolution analysis, subband coding, Haar Transforms

e Wavelets are applied everywhere from image classification to
compression to steganography and watermarking

e Essentially, wavelets once again demonstrate the power of a good,
clean, rigorous and efficient representation

e Don’t shun mathematics!
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