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OVERVIEW

e Introduction

o need for compression
o data redundancy

o measuring redundancy
o information theory

e Lossless Compression Techniques

o Huffman encoding and variants
o Arithmetic encoding

o Binary image encoding

o Run-length encoding

o Predictive encoding

e Lossy Compression Techniques
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IMAGE COMPRESSION

e Images require enormous storage, especially when colour
o A4 page at 300 dpi ~ 7 MB (grayscale), ~ 25 MB (colour)

e There is a great need to reduce image data size

e To understand compression, we need to distinguish between data and
information
o data is the set of symbols for conveying information, e.g.,

- for a time I stood pondering on circles (38B)
=-31415926 / 10000000 (17B)
- SYMBOL FONT p (12B)
-7 (1B)
- pi (2B)
o The information is 7 to 7 decimal places, but data varies
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REDUNDANCY

e Data has three types of redundancies

o coding redundancy: data representation can be made more efficient
- Huffman coding, Arithmetic coding, etc.

o inter-pixel redundancy: correlations between adjacent pixels
- run-length coding, left pixel subtraction coding, etc.

o psycho-visual redundancy: humans do not necessarily perceive all
the information

- reduction in number of colours, quantization, etc.

e Compression aims to reduce all three redundancies, but psycho-visual
redundancies normally result in /ossy compression
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C'r 1s the compression ratio
e Key concept: average number of bits needed to represent a pixel, L,

Letp.(ry) = * k=0,1,2,...,L—1

n
L-1
Lavg — kZ::O l<7“]<;>pr(7°k;>
e For an uncompressed image, I(r;) = 8,k = 0,1,2,..., L — 1, and

Lcwg = Z(Tk> =5
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MEASURING INTERPIXEL REDUNDANCY

e Interpixel redundancy measured as correlation between adjacent pixels.
Correlation, v(An), between two pixels separated by a distance An,

A(An)
An) —
1 N—-1-An
A(An) = A
(An) = o 2 fl2,y)f(z,y + An)
v(An) should be ~ 0 if there is no correlation between pixels that are

An apart

e Interpixel redundancy is also referred to as geometric, spatial or inter-
frame redundancy
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FIDELITY CRITERIA

e How do we know that compression did not lose any information?

e Error analysis

A

e(xay) — ]J\l}xl’]:(\{) 1_Af(x7y)
e="% yéo (@, y) — f(z,y)]
s = | 5 3 [f(@,y) = fla,y)
=0 y

e Sometimes, signal-to-noise ratio, SNR is used instead of e,

z, 5 f@y)
SNRyms = | 3r-1n-1 -

NS [f<xay)_f(xay)]2

x=0 y=0
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DEALING WITH CODING REDUNDANCY

e How do we know if there is coding redundancy?

Answer: Find the minimum number of bits needed per pixel. If it is
smaller than L,,, then there is coding redundancy

e How do we find minimum number of bits needed for representing a
pixel?
Answer: information theory!
e Shannon’s theory: self-information of a message F, I(F), is
1
P(F)
where P(F) is the probability of occurrence of £

I(F) =log = —log P(F)
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A WEE BIT OF INFORMATION THEORY

The minimum number of bits needed is equal to the entropy per pixel.
Let A = {ay,ay,...,a;} and the probability that a; occurs is P(a;).
Then

I{a;) = —log P(ay)
If k£ source symbols are generated, then from the law of large numbers,

the symbol a; will be output kP(a;) times.
The average information from £ source symbols is

—k 3 Pl(a;)log P(a)
=
The average information per pixel is
— '§1 P(a;)log P(a;)
=

This 1s called the entropy of the source (in this case, image)
It L,,, > entropy, then there is redundancy
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HUFFMAN CODING

o Huffman coding assigns short codewords to the most probable values
and long codewords to rarely occurring symbols

e [s the most popular coding redundacy minimization technique

Huffman Coding Algorithm
STEP 1: Create a series of gray scale

ORIGINAL REDUCED

d . CLJ' P(&j) 1 2 3 4 5 6
SOOI 0 04 04 04 04 04 0.4 0.6
e Sort gray scales according to 1 03 03 03 03 0.3 03 04

probabilities of occurrences 2 01 101 01 0102053

] 3 0.1 |01 0.1 0.1 0.1

e Take the two least occurring 4 0.04 004 0.06 0.1

gray scales and combine them to 5 0.03 0.03 0.04

create a new reduced gray scale 6 0.02 |0.03

7 0.01

e Repeat the above steps until
only two gray scales remain
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HUFFMAN CODING...

STEP 2: Assign codewords to each
ORIGINAL REDUCED
gray scale aj Plaj)| 1 2 3 4 5 6

e Assign codes 0 and 1 arbitrarily 0 04 |04 04 04 04 04 06
to the two gray scales obtained 103 103 03 030303 04
at the end of the first step. 2 0110101010203

. . 3 0.1 |01 0.1 0.1 0.1
Note t.hat one 1is real while the 4 004 0.04 006 0.1
other is a reduced gray scale. 5 0.03 0.03 0.04

e Assign the code for the re- ? 8'8? 0.05
duced gray scale to both its con- : :
stituents Assigned Codes

ORIG. CODE|ORIG.  CODE

e Append 0 to one and 1 to the 0 1] 4 01011
other constituent 1 00, 5 010100
R h b 2 6 0101010

e Repeat the above process un- 3 - 0101011

til all gray scales are assigned a

code
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COMPRESSION RATIO CALCULATIONS

e How good is Huffman encoding?

o Entropy = 2.01
o Uncompressed Image: L, = 3
o Huffman Encoded:

1x0.442x0.3+3x0.14+4x0.145x0.044+6x0.03+7x0.024+7x0.01 = 2.29

o Compression Ratio: 3.0 / 2.29 = 1.31
e Decompression 1s very easy

o Scan encoded string from left ORIG. CODE|ORIG.  CODE
to right 0 1| 4 01011
o Whenever a codeword is seen, 1 00 5 010100
output it 2 011 6 0101010
3 0100 7 0101011

Such simplicity possible because
no codeword is a prefix of an-
other

Decode: 1010101111001011 Comp-11




HUFFMAN CODING VARIANTS
e Huffman code is theoretically the best

o It comes nearest to entropy except that it is restricted to integer length
codewords

o Very slow to compute as it computes one codeword at a time
o For a 24-bit colour image it is prohibitively slow
o Length of codeword becomes large for small probabilities

e Usually variants on Huffman coding are used in practice

o Truncated Huffman — use standard binary representation for all the
low probability symbols

o Huffman Shift — divide symbols into blocks; Huffman within a
block; and use a shift symbol to travel from block to block

e Other codes

o By code — for symbols obeying exponential distributions
o Binary shift code
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ARITHMETIC CODING

e Huffman is an integer code, i.e., length of codeword is an integer

e Entire sequence of source symbols is mapped into a single real number
in the interval [0, 1)

e The width of the interval depends on the probability of occurrence of
the source symbol

a; P(a;) sub-interval | example

0 0.2 0.0, 0.2) |Msg: 31415
1 0.3 0.2, 0.5)
2 0.05 [0.5,0.55)
3 0.15 [0.55,0.7)
4 0.2 0.7, 0.9)
5 0.1 0.9, 1.0)
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LZW CODING

e Combines coding efficiency with interpixel redundancy

e Assigns fixed-length code words to variable-length source sequences
e [t must be licensed under US Patent No. 4,558,302

e LZW coding is used in GIF, TIFF and PDF

e How does LZW work?

o constructs a codebook or dictionary
o pixel values 0, 1, . .., 255 are unchanged
o sequences of gray levels are assigned values from 256
- For example, a sequence of 180, 190 may be assigned 256
o dictionary used in encoding and decoding the image

e Remarkable fact: dictionary can be reconstructed while decoding!

e Dictionary management is the big issue
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LZW EXAMPLE

Currently Current Encoded Code Code Entry

RGCOg. Pixel Output Word [mage Segment
Sequence 39 39 126 126
39 39 39 126 126
39 39 39 256 39-39 |39 39 126 126
39 126 39 257 39-126 | 39 39 126 126
126 126 126 258 126-126
126 39 126 259 126-39
39 39
39-39 126 256 260 39-39-126
126 126

126-126 39 258 261 126-126-39
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LOSSLESS PREDICTIVE CODING

e Minimizes interpixel redundancy

e Idea is to predict the next pixel and then store only the difference be-
tween actual and predicted values

e The difference is encoded using any of the earlier methods for greater
compression

e 1-D Linear Predictive Coding scheme

aS

Lete = f(x,y) — f(x,y)

f(z,y) = round | & aif(z,y 1)

e Other functions may be used to model f(z,y) such as exponential
smoothing, moving average, etc.
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LOSSY COMPRESSION

e Lossless compression schemes give very low compression ratios in gen-
eral — usually between 2:1 and 5:1

e Compromise accuracy for increased compression ratios. Psycho-visual
redundancy allows such compromises to be tolerated

e Compression ratios in excess of 30:1 are common. At ratios of 20:1,
images are virtually indistinguishable from originals

e Common techniques

o Lossy predictive coding

- delta modulation
- diffential pulse code modulation

o Transform coding — DFT, DCT, etc.
o Zonal coding
o Threshold coding

e Image Compression Standards — JPEG

(©) Chakravarthy Bhagvati Comp-17



LOSSY PREDICTIVE CODING

e One of the simplest schemes is Jf 1= f 1
delta modulation frn = afn1+en

+C if f, —afuo >0

otherwise

e As ( is fixed, we need only to
transmit the sign, i.e., 1 bit

Example with a = 0.9 and ( = reo |
15 o |
Input gray scales: e =

159 160 167 162 80 76 97 100 oo |

f1:159 So_iééasé+é
L/1220.9><159—|—15:158 f6:O.9><125—15:98
f3 = 0.9 x 158 + 15 = 157

A fr =09 x 98415 = 103
j} = 88 i £Z+£: gg fo= 09 x 103+ 15 = 108
5 = 0. — b=
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OPTIMAL ENCODING
e Several variants of delta modulation exist
e Optimal encoding and differential pulse code modulator (DPCM)

o minimize the encoder’s mean-sqared-error

2 P12
Eleny = Exlfa = ful'}
e Assuming prediction is constrained to linear combination of m previ-
ous pixels

A m
fn — igl O‘ifn—i

Minimize E{e%} = FE{|f, — 51 Oéz‘fn—z']Z}

e The above system may be solved as a system of simultaneous equations.
Normally, m < 3
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OPTIMAL QUANTISER

e Generic quantiser is a staircase Optimisation Procedure
function e Key Idea: The number of pixels
e s are the decision points should be uniformly distributed
over each quantisation interval

e ¢ are the reconstruction points

e We chose optimal s and ¢ Optimisation Conditions
| , L

t 4 J [S‘jl(s—ti)p(s)dS:O, = 1,2,...,5

tr 0 1 =0

t - e = 7

2 L () +1 . _ L

o :Hia o Z eDeaane
> (W2 j_ %2 % Sw21

’7 ] t-(L/z)
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TRANSFORM CODING: DCT

e Instead of the spatial domain, use a transform domain obtained from
FFT, DFT, DCT, WHT, KLIT, etc.

e Many coefficients in transform domain may be close to 0 and can be
ignored

e We get high compression ratios with good image quality
e Some issues in transform coding

o non-sinusoidals, e.g., WHT, are easy to implement
o image independent basis functions are computationally better

o sinusoids pack information better (i.e., they approximate original im-
ages better)

e Given the above, a good choice is discrete cosine transform (DCT)

o sinusoid and independent basis functions
e JPEG is based on DCT
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DISCRETE COSINE TRANSFORM

e The forward transform of an image #(x, y) is given by

N—1N-1 |
Tlu,v)= T = i,y)9(z,y,u,0)

e Given T'(u, v), the image i(x, y) is given by the inverse transform

N—-1N-1
ia,y) =5, s T, v)h(z,y,u,0)

e g(x,y,u,v) and h(x,y,u,v) are called the forward and inverse trans-

formaiton kernels respectively
e Discrete Cosine Transform is defined by the following kernel pair

g(x7 y? u? /U> — h(x7 y? u? U)

2 1 2 1
= a(u)a(v) cos ( w;N)WT COS ( y;N)mT
where -
() = N foru =0
= foru=1,2,...,N—1 Comp-22




DCT MASKING FUNCTIONS

e In DCT, g(z,y,u,v) and h(x, y, u, v) are independent of the values of
i(x,y) or T'(u,v). Therefore, we rewrite the tranform equation as

N—-1N-1

I= L X T(u,v)H,,, where
h(0,0,u,v) h(0,1,u,v) -+ h(0,n—1,u,v)
o h(1,0,u,v) h(1,1,u,v) h(l,n —1,u,v)

h(n—1,0,u,v) hin —1,1,u,v) --- h(n —1,n —1,u,v)
e A coefficient masking function (u, v) may be defined as

(11, v) = 0 if T'(u, v) satisfies a truncation condition
Y01 otherwise

e An approximation of the image I is

A N—-1N-1
I = L X Y(u, v)T (u, v)H,,
u=0 v=
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ENCODING THE MASKING FUNCTIONS

® v(u, v) is the key to compression Zonal Coding Mask
: T[22z ]z]o]o]o
° is one of 1{1]2f2]o]o]o]0
: 1[1]1oo]o]o]0
o Zonal coding B 0 0 o000
o Threshold coding 1/0/0/0/0|0|0|0
: . ololofolo]olo]o
oTruncatmg, quantlslng and en- Ol0lO0/0l0O|O|0O]O
coding is called 0/0/0]0]0]0]0]0
Zonal Coding 8|7]6]4[3]2]1]0
e Divide the image into k X k sub- Loy S 121110
6|54 /4[3[1]1]0
blocks 4]4]3[3[2[1]0]0
: 3[3[3[2]1]1]0]0
e Compute k x k DCT coefficients S H>tililitoToto
e Retain the coefficients that show (1) (1) (1) 8 8 8 8 8
maximum variance
Z.onal Bit Allocation
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THRESHOLD CODING

e Zonal coding is fixed for all sub- e Global threshold gives variable

blocks compression ratios
e Threshold coding varies adap- e Local threshold always retains a
tively for different sub-blocks fixed number of coefficients in
o Retain largest valued coeffi- each block gnd gives fixed com-
S pression ratio

o also called N-largest coding

e Three ways to do threshold cod- ° The. thi,rd scheme has maximum

: flexibility

e Define a normalisation matrix

o Global threshold ° T

o Local threshold for each sub- T(% v) = round (u, )
block Z(u,v)

o Function that varies with each e The matrix 7 combines a delta-
sub-block modulation scheme with coeffi-

cient selection
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JPEG COMPRESSION SCHEME

¢ JPEG (Joint Photographic Ex-
perts Group) standardises DCT
based compression scheme

e JPEG is lossy DCT scheme
based on 8 x 8 sub-blocks using
a standard normalization ma-
trix

Normalization Matrix

16/11/10/16| 24 | 40 | 51 | 61
12/12]14]19] 26 | 58 | 60 | 55 -
1411311624 | 40 | 57 | 69 | 56 25% Orig
14/17(22(29| 51 | 87 | 80 | 62 (21869 B) (204624 B)
18/22(37[56| 68 [109]103| 77
24[35[55/64| 81 |104]113] 92
49 641781871103 |121/120| 101
7219219598 112|100 |103| 99
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EXAMPLES (BALLOON)

Orig (1.28MB) JPG (92KB) 75% (16KB)

50% (11KB) 25% (8.6KB) 5% (6KB)

(©) Chakravarthy Bhagvati Comp-27



EXAMPLES (PARROTS)

Orig (1.06MB) JPG (162KB) 75% (45KB)
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PARROTS (CONTD.)

50% (34KB) 25% (20KB) 5% (9KB)
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SUMMARY

e Image compression is possible because of redundancies in images

o coding redundancy
o interpixel redundancy
o psychovisual redundancy

e Compression can be lossless or lossy

o lossless compression ratios are quite small
o lossy compression gives higher ratios

e DCT is the most popular compression technique today
e JPEG standardises DCT

e Wavelet based compression is the rage in research - latest version of JPG
permits wavelets for compression
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