IMAGE PROCESSING COMPRESSION AND CODING

Chakravarthy Bhagvati Dept. of Computer and Information Sciences University of Hyderabad

16 September 2006

OVERVIEW

- Introduction
 - need for compression
 - \circ data redundancy
 - \circ measuring redundancy
 - \circ information theory
- Lossless Compression Techniques
 - \circ Huffman encoding and variants
 - Arithmetic encoding
 - \circ Binary image encoding
 - \circ Run-length encoding
 - \circ Predictive encoding
- Lossy Compression Techniques

IMAGE COMPRESSION

- Images require enormous storage, especially when colour
 - \circ A4 page at 300 dpi \approx 7 MB (grayscale), \approx 25 MB (colour)
- There is a great need to reduce image data size
- To understand compression, we need to distinguish between *data* and *information*
 - o data is the set of symbols for conveying information, e.g.,
 - for a time I stood pondering on circles (38B)
 - 31415926 / 1000000 (17B)
 - Symbol font p (12B)
 - -π (1B)
 - pi (2B)

 \circ The information is π to 7 decimal places, but data varies

REDUNDANCY

- Data has three types of redundancies
 - *coding* redundancy: data representation can be made more efficient
 - Huffman coding, Arithmetic coding, etc.
 - o *inter-pixel* redundancy: correlations between adjacent pixels
 - run-length coding, left pixel subtraction coding, etc.
 - *psycho-visual* redundancy: humans do not necessarily perceive all the information
 - reduction in number of colours, quantization, etc.
- Compression aims to reduce all three redundancies, but psycho-visual redundancies normally result in *lossy* compression

MEASURING CODING REDUNDANCY

• *Relative Data Redundancy, R*_D

$$R_D = 1 - \frac{1}{C_R}$$
$$C_R = \frac{n_1}{n_2}$$

 C_R is the compression ratio

• Key concept: *average number of bits* needed to represent a pixel, L_{avg} ,

Let
$$p_r(r_k) = \frac{n_k}{n}, k = 0, 1, 2, \dots, L-1$$

 $L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$

• For an uncompressed image, $l(r_k) = 8, k = 0, 1, 2, ..., L - 1$, and $L_{avg} = l(r_k) = 8$

MEASURING INTERPIXEL REDUNDANCY

• Interpixel redundancy measured as correlation between adjacent pixels. Correlation, $\gamma(\Delta n)$, between two pixels separated by a distance Δn ,

$$\begin{split} \gamma(\Delta n) &= \frac{A(\Delta n)}{A(0)} \\ A(\Delta n) &= \frac{1}{N - \Delta n} \sum_{\substack{y=0\\y=0}}^{N-1 - \Delta n} f(x, y) f(x, y + \Delta n) \end{split}$$

 $\gamma(\Delta n)$ should be $\thickapprox 0$ if there is no correlation between pixels that are Δn apart

• Interpixel redundancy is also referred to as *geometric, spatial* or *inter-frame* redundancy

FIDELITY CRITERIA

• How do we know that compression did not lose any information?

• Error analysis

$$e(x,y) = \hat{f}(x,y) - f(x,y)$$

$$e = \sum_{\substack{X=0 \ y=0}}^{M-1} \sum_{\substack{y=0 \ y=0}}^{N-1} [\hat{f}(x,y) - f(x,y)]$$

$$e_{rms} = \sqrt{\sum_{\substack{X=0 \ y=0}}^{M-1} \sum_{\substack{y=0}}^{N-1} [\hat{f}(x,y) - f(x,y)]}$$

• Sometimes, *signal-to-noise ratio*, *SNR* is used instead of e_{rms}

$$SNR_{rms} = \sqrt{\frac{\sum_{\substack{X=0 \ y=0}}^{M-1} \hat{f}(x,y)^2}{\sum_{\substack{x=0 \ y=0}}^{M-1} \hat{f}(x,y) - f(x,y)]^2}}$$

- How do we know if **there is** coding redundancy? Answer: Find the *minimum* number of bits needed per pixel. If it is smaller than L_{avg} then there is coding redundancy
- How do we find minimum number of bits needed for representing a pixel?
 - Answer: *information theory*!
- Shannon's theory: *self-information* of a message E, I(E), is

$$I(E) = \log \frac{1}{P(E)} = -\log P(E)$$

where ${\cal P}(E)$ is the probability of occurrence of E

The minimum number of bits needed is equal to the *entropy* per pixel. Let $A = \{a_1, a_2, \ldots, a_J\}$ and the probability that a_j occurs is $P(a_j)$. Then

$$I(a_j) = -\log P(a_j)$$

If k source symbols are generated, then from the law of large numbers, the symbol a_j will be output $kP(a_j)$ times. The average information from k source symbols is

$$-k\sum_{j=1}^{J}P(a_j)\log P(a_j)$$

The average information per pixel is

$$-\sum_{j=1}^{J} P(a_j) \log P(a_j)$$

This is called the *entropy* of the source (in this case, image) If $L_{avg} > entropy$, then there is redundancy

- *Huffman coding* assigns short codewords to the most probable values and long codewords to rarely occurring symbols
- Is the most popular coding redundacy minimization technique

Huffman Coding Algorithm STEP 1: Create a series of gray scale reductions

- Sort gray scales according to probabilities of occurrences
- Take the two least occurring gray scales and combine them to create a new *reduced gray scale*
- Repeat the above steps until only two gray scales remain

OR	IGINAL	REDUCED					
a_j	$P(a_j)$	1	2	3	4	5	6
0	0.4	0.4	0.4	0.4	0.4	0.4	0.6
1	0.3	0.3	0.3	0.3	0.3	0.3	0.4
2	0.1	0.1	0.1	0.1	0.2	0.3	
3	0.1	0.1	0.1	0.1	0.1		
4	0.04	0.04	0.06	0.1			
5	0.03	0.03	0.04				
6	0.02	0.03					
7	0.01						

STEP 2: Assign codewords to each gray scale

• Assign codes 0 and 1 arbitrarily to the two gray scales obtained at the end of the first step.

Note that one is real while the other is a reduced gray scale.

- Assign the code for the reduced gray scale to both its constituents
- Append 0 to one and 1 to the other constituent
- Repeat the above process until all gray scales are assigned a code

	ORIGINAL REDUCED							
·								
) \)/	1			4	5	6	
0	0.4	0.4	0.4	0.4	0.4	0.4	0.6	
1	0.3	0.3	0.3	0.3	0.3	0.3	0.4	
2	0.1	0.1	0.1	0.1	0.2	0.3		
3	0.1	0.1	0.1	0.1	0.1			
4	0.04	0.04 0	.06	0.1				
5	0.03	0.03 0	.04					
6	0.02	0.03						
7	0.01							
	Assigned Codes							
	ORIG.	CODE	i de la constancia de la c		ODE			
	0	1		1	01011			
	1	00	5	5	010100			
	2	011	6	5	0101	010		
	3	0100	7	7	0101	011		

© Chakravarthy Bhagvati

COMPRESSION RATIO CALCULATIONS

• How good is Huffman encoding?

- \circ Entropy = 2.01
- \circ Uncompressed Image: $L_{avg} = 3$
- Huffman Encoded:

 $1 \times 0.4 + 2 \times 0.3 + 3 \times 0.1 + 4 \times 0.1 + 5 \times 0.04 + 6 \times 0.03 + 7 \times 0.02 + 7 \times 0.01 = 2.29$

- Compression Ratio: 3.0 / 2.29 = 1.31
- Decompression is very easy
 - Scan encoded string from left to right
 - Whenever a codeword is seen, output it
 - Such simplicity possible because no codeword is a prefix of another

ORIG.	CODE	ORIG.	CODE
0	1	4	01011
1	00	5	010100
2	011	6	0101010
3	0100	7	0101011

Decode: 1010101111001011

HUFFMAN CODING VARIANTS

• Huffman code is theoretically the best

- It comes nearest to entropy except that it is restricted to integer length codewords
- Very slow to compute as it computes one codeword at a time
- For a 24-bit colour image it is prohibitively slow
- \circ Length of codeword becomes large for small probabilities
- Usually variants on Huffman coding are used in practice
 - Truncated Huffman use standard binary representation for all the low probability symbols
 - Huffman Shift divide symbols into blocks; Huffman within a block; and use a *shift* symbol to travel from block to block
- Other codes
 - \circ B_2 code for symbols obeying exponential distributions \circ Binary shift code

ARITHMETIC CODING

- Huffman is an integer code, i.e., length of codeword is an integer
- \bullet Entire sequence of source symbols is mapped into a single real number in the interval [0,1)
- The width of the interval depends on the probability of occurrence of the source symbol

a_j	$P(a_j)$	sub-interval	example
0	0.2	[0.0, 0.2)	Msg: 31415
1	0.3	[0.2, 0.5)	
2	0.05	[0.5, 0.55)	
3	0.15	[0.55, 0.7)	
4	0.2	[0.7, 0.9)	
5	0.1	[0.9, 1.0)	

LZW CODING

- Combines coding efficiency with interpixel redundancy
- Assigns fixed-length code words to variable-length source sequences
- It must be licensed under US Patent No. 4,558,302
- LZW coding is used in GIF, TIFF and PDF
- How does LZW work?
 - constructs a codebook or *dictionary*
 - \circ pixel values $0, 1, \ldots, 255$ are unchanged
 - \circ sequences of gray levels are assigned values from 256
 - For example, a sequence of 180, 190 may be assigned 256
 - \circ dictionary used in encoding and decoding the image
- Remarkable fact: dictionary can be reconstructed while decoding!
- Dictionary management is the big issue

LZW EXAMPLE

Currently Recog. Sequence	Current Pixel	Encoded Output	Code Word	Code Entry	<i>Image Segment</i> 39 39 126 126
1	39				39 39 126 126 39 39 126 126
39	39	39	256	39-39	39 39 126 126
39	126	39	257	39-126	39 39 126 126
126	126	126	258	126-126 ^L	
126	39	126	259	126-39	
39	39				
39-39	126	256	260	39-39-126	
126	126				
126-126	39	258	261	126-126-39	
:	:	:	:	:	_

- Minimizes *interpixel* redundancy
- Idea is to predict the next pixel and then store only the difference between actual and predicted values
- The difference is encoded using any of the earlier methods for greater compression
- 1-D Linear Predictive Coding scheme

Let
$$e = \hat{f}(x, y) - f(x, y)$$

 $\hat{f}(x, y) = \operatorname{round} \left[\sum_{i=1}^{m} \alpha_i f(x, y - i)\right]$

• Other functions may be used to model $\hat{f}(x, y)$ such as *exponential smoothing*, *moving average*, etc.

LOSSY COMPRESSION

- Lossless compression schemes give very low compression ratios in general usually between 2:1 and 5:1
- Compromise accuracy for increased compression ratios. Psycho-visual redundancy allows such compromises to be tolerated
- Compression ratios in excess of 30:1 are common. At ratios of 20:1, images are virtually indistinguishable from originals
- Common techniques
 - Lossy predictive coding
 - delta modulation
 - diffential pulse code modulation
 - Transform coding DFT, DCT, etc.
 - \circ Zonal coding
 - Threshold coding
- Image Compression Standards JPEG

LOSSY PREDICTIVE CODING

- One of the simplest schemes is *delta modulation*
- As ζ is fixed, we need only to transmit the *sign*, i.e., 1 bit

Example with $\alpha = 0.9$ and $\zeta = 15$

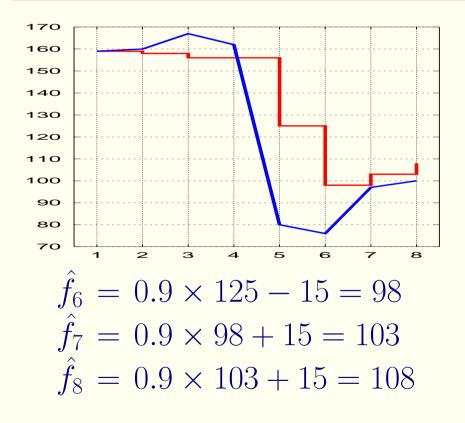
Input gray scales: 159 160 167 162 80 76 97 100

$$\begin{aligned} \hat{f}_1 &= 159 \\ \hat{f}_2 &= 0.9 \times 159 + 15 = 158 \\ \hat{f}_3 &= 0.9 \times 158 + 15 = 157 \\ \hat{f}_4 &= 0.9 \times 157 + 15 = 156 \\ \hat{f}_5 &= 0.9 \times 156 - 15 = 125 \end{aligned}$$

$$\hat{f}_{1} = f_{1}$$

$$\hat{f}_{n} = \alpha \hat{f}_{n-1} + e_{n}$$

$$e_{n} = \begin{cases} +\zeta & \text{if } f_{n} - \alpha \hat{f}_{n-1} > 0 \\ -\zeta & \text{otherwise} \end{cases}$$



OPTIMAL ENCODING

- Several variants of delta modulation exist
- Optimal encoding and *differential pulse code modulator* (*DPCM*) • minimize the encoder's mean-sqared-error

$$E\{e_n^2\} = E\{[f_n - \hat{f}_n]^2\}$$

 \bullet Assuming prediction is constrained to linear combination of m previous pixels

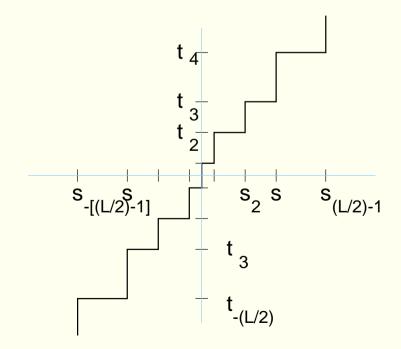
$$\hat{f}_n = \sum_{i=1}^m \alpha_i f_{n-i}$$

Minimize $E\{e_n^2\} = E\{[f_n - \sum_{i=1}^m \alpha_i f_{n-i}]^2\}$

 \bullet The above system may be solved as a system of simultaneous equations. Normally, $m\leq 3$

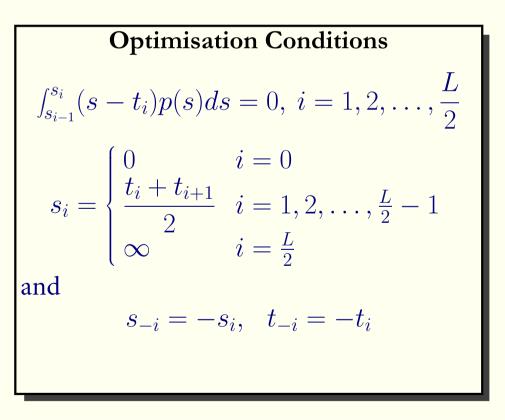
OPTIMAL QUANTISER

- Generic quantiser is a *staircase* function
- *s* are the *decision* points
- *t* are the *reconstruction* points
- \bullet We chose optimal s and t



Optimisation Procedure

• *Key Idea:* The number of pixels should be uniformly distributed over each quantisation interval



TRANSFORM CODING: DCT

- Instead of the spatial domain, use a transform domain obtained from FFT, DFT, DCT, WHT, KLT, etc.
- Many coefficients in transform domain may be close to 0 and can be ignored
- We get high compression ratios with good image quality
- Some issues in transform coding
 - o non-sinusoidals, e.g., WHT, are easy to implement
 - \circ image independent basis functions are computationally better
 - sinusoids pack information better (i.e., they approximate original images better)
- Given the above, a good choice is *discrete cosine transform (DCT)* sinusoid and independent basis functions
- JPEG is based on DCT

DISCRETE COSINE TRANSFORM

• The forward transform of an image i(x, y) is given by

$$T(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} i(x,y)g(x,y,u,v)$$

 \bullet Given T(u,v), the image i(x,y) is given by the inverse transform

$$i(x,y) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} T(u,v)h(x,y,u,v)$$

- $\bullet~g(x,y,u,v)$ and h(x,y,u,v) are called the forward and inverse transformation kernels respectively
- *Discrete Cosine Transform* is defined by the following kernel pair

$$g(x, y, u, v) = h(x, y, u, v)$$

= $\alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$

where

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0\\ \sqrt{\frac{2}{N}} & \text{for } u = 1, 2, \dots, N-1 \end{cases}$$
 Comp-22

• In DCT, g(x, y, u, v) and h(x, y, u, v) are independent of the values of i(x, y) or T(u, v). Therefore, we rewrite the tranform equation as

$$\mathbf{I} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} T(u, v) \mathbf{H}_{u,v}, \text{ where}$$
$$\mathbf{H}_{uv} = \begin{bmatrix} h(0, 0, u, v) & h(0, 1, u, v) & \cdots & h(0, n-1, u, v) \\ h(1, 0, u, v) & h(1, 1, u, v) & \cdots & h(1, n-1, u, v) \\ \vdots & \vdots & \vdots & \vdots \\ h(n-1, 0, u, v) & h(n-1, 1, u, v) & \cdots & h(n-1, n-1, u, v) \end{bmatrix}$$

 \bullet A coefficient masking function $\gamma(u,v)$ may be defined as

 $\gamma(u,v) = \begin{cases} 0 & \text{ if } T(u,v) \text{ satisfies a truncation condition} \\ 1 & \text{ otherwise} \end{cases}$

 \bullet An approximation of the image $\boldsymbol{\hat{I}}$ is

$$\mathbf{\hat{I}} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \gamma(u, v) T(u, v) \mathbf{H}_{u, v}$$

© Chakravarthy Bhagvati

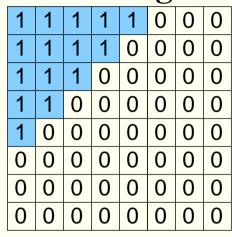
Comp-23

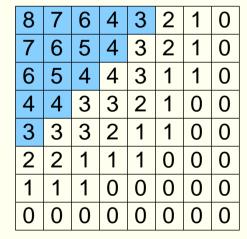
- $\gamma(u, v)$ is the key to compression
- *Truncation condition* is one of
 - \circ Zonal coding
 - Threshold coding
- Truncating, quantising and encoding is called *bit allocation*

Zonal Coding

- Divide the image into $k \times k$ subblocks
- Compute $k \times k$ DCT coefficients
- Retain the coefficients that show maximum *variance*

Zonal Coding Mask





Zonal Bit Allocation

- Zonal coding is fixed for all subblocks
- Threshold coding varies adaptively for different sub-blocks
- Retain *largest valued* coefficients
- Three ways to do threshold coding
 - o Global threshold
 - *Local* threshold for each subblock
 - *Function* that varies with each sub-block

- Global threshold gives variable compression ratios
- Local threshold always retains a fixed number of coefficients in each block and gives fixed compression ratio
 - also called *N*-largest coding
- The third scheme has maximum flexibility
- Define a *normalisation matrix*

$$\hat{T}(u,v) = \operatorname{round} \left[\frac{T(u,v)}{Z(u,v)} \right]$$

• The matrix Z combines a deltamodulation scheme with coefficient selection

JPEG COMPRESSION SCHEME

- JPEG (Joint Photographic Experts Group) standardises DCT based compression scheme
 JPEG is lossy DCT scheme
- JPEG is lossy DC1 scheme based on 8 × 8 sub-blocks using a standard normalization matrix

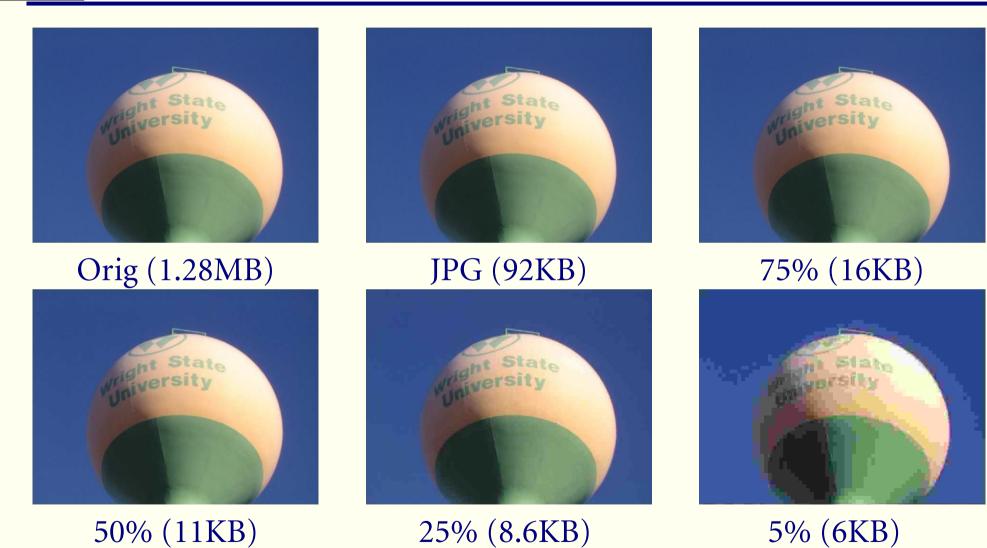
Normalization Matrix

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

25% (21869 B) Orig (204624 B)

© Chakravarthy Bhagvati

EXAMPLES (BALLOON)



EXAMPLES (PARROTS)

Orig (1.06MB)

JPG (162KB)

75% (45KB)

PARROTS (CONTD.)

50% (34KB)

25% (20KB)

5% (9KB)

SUMMARY

• Image compression is possible because of redundancies in images

- coding redundancy
- \circ interpixel redundancy
- \circ psychovisual redundancy
- Compression can be lossless or lossy
 - \circ lossless compression ratios are quite small
 - \circ lossy compression gives higher ratios
- DCT is the most popular compression technique today
- JPEG standardises DCT
- Wavelet based compression is the rage in research latest version of JPG permits wavelets for compression