IMAGE PROCESSING AND CURRENT TRENDS

(12–13 Sept '09)

IMAGE PROCESSING SEGMENTATION

Chakravarthy Bhagvati Dept. of Computer & Information Sciences University of Hyderabad

Email: chakcs@uohyd.ernet.in 13 September 2009

INSTITUTE OF ELECTRONICS AND TELECOMMUNICATION ENGINEERS

- Introduction
- Basic Techniques
 - thresholding and ranging
 edge detection
 connected components
- Region Based Techniques
 region growing
 - region splittingregion split-and-merge
- Morphological Techniques
 conditional dilation
 closing and watersheds

- Clustering Techniques
 - k-means
 - nearest neighbours
 - neural networks
- Graph Based Techniques
 - spanning treenormalized cuts
- Transform Domain Techniques

OVERVIEW

- fourier techniques
- wavelets
- \circ Gabor filters
- Robust Techniques
- Conclusion

• Segmentation: subdividing an image into its constituent parts

- What are the constituent parts?
 - \circ Objects
 - \circ Region containing pixels of similar properties
 - \circ Contiguous regions perceived by humans
- Segmentation is one of the most important steps in image processing (and one of the most difficult !)

INTRODUCTION

Segmentation splits an image I into regions or subsets R_i with the following properties

- $I = \bigcup_{i=1}^{N} R_i$: all pixels belong to some segment or the other
- $R_i \cap R_j = \phi, i \neq j$: regions do not overlap
- Each R_i is a connected component, i.e., there exists a path that lies entirely within R_i between every pair of pixels
- Some important low-level cues
- discontinuity in brightness/colour
- similarity in brightness/colour
- edge densities, gray-level distributions, ...

WHAT IS SEGMENTATION?

- The simplest technique retain pixels having gray levels within a specified range; make all others *black* — separates objects based on brightnesses (or colours)
 - e.g., black text on white paper
 also, bougainvilla flowers from green leaves (colour ranging)

Flowers

(Hue $\approx 310^{\circ}$)

Original

Leaves (Subtract Flowers)

THRESHOLDING AND RANGING

- Detection of discontinuities in intensity function
 - \circ can be discontinuity in any feature value, e.g., frequencies, texture, disparity or depth, etc.
- Already familiar with gradient operators such as Robert's, Sobel's, Prewitt's, etc.
- Let us look at one of the best Canny's algorithm

 proposed by John F. Canny (MIT) in 1986
 extended Marr-Hildreth edge detector by adding a hysteresis component
- Canny's is normally the benchmark for evaluating edge detectors today

EDGE DETECTION

CANNY'S EDGE DETECTOR

• Find horizontal (I_h) and vertical gradients (I_v) at each pixel

$$I_{h} = \frac{\partial I_{g}}{\partial x}$$

$$= \frac{\partial}{\partial x} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \right)$$

$$= -\frac{x}{\sqrt{2\pi\sigma^{3}}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \frac{x}{\sigma^{2}} I_{g}$$

Similarly, $I_v = \frac{\partial I_g}{\partial y} = \frac{y}{\sigma^2} I_g$. These are known as DoG operators • Compute magnitude $(M = \sqrt{I_h^2 + I_v^2})$ orientation $(\theta = \arctan\left(\frac{I_v}{I_h}\right))$

CANNY'S EDGE DETECTOR ...

Find the second derivative (i.e., Laplacian of Gaussian or LoG) I_L
Find the Zero-Crossings in I_L; they are the edge locations

Original

- Identify two thresholds T₁ and T₂ (T₁ > T₂)
 o if edge magnitude at a pixel identified as a zero-crossing in I_L is > T₁, mark it as an edge
 - \circ if edge magnitude is $< T_2$, mark it as non-edge

CANNY'S EDGE DETECTOR ...

HOW DO DOGs and LOGs LOOK LIKE?

- Edge Linking: For every pixel marked as an edge \circ travel forward along the edge orientation θ for a distance = σ \circ mark as an edge pixel if any pixel has an edge magnitude $T_1 > m > T_2$ along the way
- Non-Max Suppression: For every pixel marked as an edge
 travel in orthogonal direction for distance = σ on both sides
 find maximum edge magnitude and suppress all pixels with weaker strength
- The end result are 'clean' edges that are one pixel wide

BACK TO CANNY'S

- Determine INSIDE and OUTSIDE
- draw an imaginary line from the pixel to the image boundary
- if it intersects edges an odd number of times, it is inside; otherwise it is outside
- Label all the inside pixels uniquely for each region
- Problem: Simple in concept but hard to implement correctly

FROM EDGES TO REGIONS

- Given a set of boundary points, fill the region enclosed by them
- Key idea: conditional dilation
 Dilated object A is intersected with A^c (prevents from filling entire image)

Region Filling Algorithm

$$X_k = (X_{k-1} \oplus B) \cap A^c \quad k = 1, 2, \dots$$

until $X_k = X_{k-1}$
Finally, Region $= X_K \cup A$

REGION FILLING

- Very simple algorithm
- Four cases of 8 connectedness
- First pass: initial labelling of each foreground pixel \circ if none of $p_1 \dots p_4$ are labelled, assign a new label

 \circ if any one of $p_1 \dots p_4$ are labelled, assign same label

 \circ if more than one of $p_1 \dots p_4$ are labelled and their labels are identical, assign same label

 \circ if more than one of $p_1 \dots p_4$ are labelled and their labels are different, assign any of the labels mark different labels of $p_1 \dots p_4$ as equivalent

• Second pass: renumbering and merging renumber equivalent labels on second pass

CONNECTED COMPONENTS

- Start with seed pixels
- Append to each seed pixel, all its neighbours with similar properties
- Problems with region growing
- what is a good property?
- how do you determine seed pixels

 how many
 where

REGION-GROWING

- Subdivide the image into arbitrary number of sub-regions
 o usually four quadrants
- For each of the sub-regions, check if it is homogeneous (with respect to some property)
- Split Step: If it is not, subdivide the region into four smaller quadrants; repeat Step 2
- Merge Step: For each region, check if any of its adjacent regions have similar properties. If so, merge them

REGION SPLIT-AND-MERGE

REGION SPLIT-AND-MERGE...

- Basic idea is to group pixels according to some common property
- K-Means is the most popular clustering algorithm
 - \circ Clusters n points into k partitions
 - \circ Inputs: k the number of clusters
 - \circ Start with k seed points as centroids of k clusters
 - \circ Assign each point to the nearest seed point
 - \circ Recalculate cluster centres after assigning all n points
 - \circ Repeat the above two steps until convergence
- \bullet Biggest Problem: knowing k
- Variant: Adaptive k-Means

CLUSTERING TECHNIQUES

Original

6-Clusters

6-Clusters + CC

There are 3535 connected components in the third image!

RESULTS OF K-MEANS

- The major drawback of K-Means clustering is selecting the number of clusters
- Adaptive K-Means allows us to get an optimal number of clusters
- Start K-Means algorithm with $N_c = 2$
- After the clusters converge, measure their goodness using the following criterion

G(n) = ratio of cluster size and average intercluster distance

- Increment N_c and repeat the above procedure
- Find the N_c that gives the minimum for G(n)

ADAPTIVE K-MEANS

- The most recent and some of the best performing segmentation algorithms view images as weighted graphs
 - \circ every pixel is initially a node in the graph
 - adjacent pixels are connected by edges
 - \circ edge weights measure the dissimilarity between pixels
- Spanning Tree forms the basis for many algorithms
 - split the graph into two by cutting the largest weight in the Minimum Spanning Tree (MST)
 - \circ use the ratios of the largest weights to determine if neighbourhood is uni, bi, or multimodal
- Today, one of the best algorithms is based on Normalized Cuts

GRAPH BASED TECHNIQUES

• Reference:

D. P. Pedro, F. Felzenswalb. "Efficient Graph Based Segmentation," *Int. J. of Computer Vision*, **50**(2):167 – 181, 2004. Implemented by S. Bhagyalaxmi (MTech 2008)

Use cluster uniformity and distance to other clusters as a criterion
 o internal difference of a component

 $C_{int} = \max$ weight in the MST

• external difference between two components

 $C_{ext} = \min$ weight edge between the two components

Ratio of the above is used for segmentation

GRAPH BASED SEGMENTATION ALGORITHM

Original

6-Clusters + CC

Graph Output

There are 413 connected components in the third image which is a lot better than plain k-means but shows you how much work is left!

k-Means gave more than 5000 components

A BETTER RESULT:-)

- Segmentation is easy to conceptualize but extremely difficult to achieve in practice
- Segmentation of simple polygonal objects is doable
- We usually under or over-segment tigers are particularly notorious :-)
- As listed at the beginning there are many strategies for segmentation but nothing works well
- Finally, let us come to an important question Is segmentation a low-level or high-level process?

