IMAGE PROCESSING SEGMENTATION

Chakravarthy Bhagvati
Dept. of Computer \& Information Sciences
University of Hyderabad


```
Email: chakcs@uohyd.ernet.in
13 September 2009
```

INSTITUTE OF ELECTRONICS AND TELECOMMUNICATION ENGINEERS

- Introduction
- Basic Techniques
- thresholding and ranging
- edge detection
- connected components
- Region Based Techniques
- region growing
- region splitting
- region split-and-merge
- Morphological Techniques
- conditional dilation
- closing and watersheds
- Clustering Techniques
- k-means
- nearest neighbours
- neural networks
- Graph Based Techniques
- spanning tree
- normalized cuts
- Transform Domain Techniques
- fourier techniques
- wavelets
- Gabor filters
- Robust Techniques
- Conclusion
- Segmentation: subdividing an image into its constituent parts
-What are the constituent parts?
- Objects
- Region containing pixels of similar properties
- Contiguous regions perceived by humans

Segmentation is one of the most important steps in image processing
(and one of the most difficult !)

Segmentation splits an image I into regions or subsets R_{i} with the following properties

- $I=\bigcup_{i=1}^{N} R_{i}$: all pixels belong to some segment or the other
- $R_{i} \cap R_{j}=\phi, i \neq j$: regions do not overlap
- Each R_{i} is a connected component, i.e., there exists a path that lies entirely within R_{i} between every pair of pixels
Some important low-level cues
- discontinuity in brightness/colour
- similarity in brightness/colour
- edge densities, gray-level distributions, ...

- The simplest technique - retain pixels having gray levels within a specified range; make all others black - separates objects based on brightnesses (or colours)
- e.g., black text on white paper
- also, bougainvilla flowers from green leaves (colour ranging)

Original

Flowers
(Hue $\approx 310^{\circ}$)

Leaves
(Subtract Flowers)

- Detection of discontinuities in intensity function
- can be discontinuity in any feature value, e.g., frequencies, texture, disparity or depth, etc.
- Already familiar with gradient operators such as Robert's, Sobel's, Prewitt's, etc.
- Let us look at one of the best - Canny's algorithm
o proposed by John F. Canny (MIT) in 1986
- extended Marr-Hildreth edge detector by adding a hysteresis component
- Canny's is normally the benchmark for evaluating edge detectors today
- Apply Gaussian filter on original image $\left(I_{0}\right)$: makes intensity function continuous and differentiable; gradient operator becomes well-behaved

Let the resultant smoothed image be I_{g}

- Find horizontal $\left(I_{h}\right)$ and vertical gradients $\left(I_{v}\right)$ at each pixel

$$
\begin{aligned}
I_{h} & =\frac{\partial I_{g}}{\partial x} \\
& =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}\right) \\
& =-\frac{x}{\sqrt{2 \pi} \sigma^{3}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\frac{x}{\sigma^{2}} I_{g}
\end{aligned}
$$

Similarly, $I_{v}=\frac{\partial I_{g}}{\partial y}=\frac{y}{\sigma^{2}} I_{g}$. These are known as DoG operators

- Compute magnitude $\left(M=\sqrt{I_{h}^{2}+I_{v}^{2}}\right)$
$\operatorname{orientation}\left(\theta=\arctan \left(\frac{I_{v}}{I_{h}}\right)\right)$

- Find the second derivative (i.e., Laplacian of Gaussian or LoG) I_{L}
- Find the Zero-Crossings in I_{L}; they are the edge locations

Original

I_{h}

I_{v}

I_{L}

- Identify two thresholds T_{1} and $T_{2}\left(T_{1}>T_{2}\right)$
- if edge magnitude at a pixel identified as a zero-crossing in I_{L} is $>T_{1}$, mark it as an edge
- if edge magnitude is $<T_{2}$, mark it as non-edge

- DoG filter has two humps at $\pm \sigma$
- DoG filter gives peak response at edge; hard to detect in noise
- LoG filter is called Mexican Hat
- LoG filter gives zero response at edge

LoG Filter

- Edge Linking: For every pixel marked as an edge
- travel forward along the edge orientation θ for a distance $=\sigma$
- mark as an edge pixel if any pixel has an edge magnitude $T_{1}>m>T_{2}$ along the way
- Non-Max Suppression: For every pixel marked as an edge
- travel in orthogonal direction for distance $=\sigma$ on both sides - find maximum edge magnitude and suppress all pixels with weaker strength
- The end result are 'clean' edges that are one pixel wide

BACK TO CANNY'S

- Determine INSIDE and OUTSIDE
- draw an imaginary line from the pixel to the image boundary
- if it intersects edges an odd number of times, it is inside; otherwise it is outside
- Label all the inside pixels uniquely for each region
- Problem: Simple in concept but hard to implement correctly
- Given a set of boundary points, fill the region enclosed by them
- Key idea: conditional dilation
- Dilated object A is intersected with A^{c} (prevents from filling entire image)

Region Filling Algorithm

$$
X_{k}=\left(X_{k-1} \oplus B\right) \cap A^{c} \quad k=1,2, \ldots
$$

$$
\text { until } X_{k}=X_{k-1}
$$

Finally, Region $=X_{K} \cup A$

- Very simple algorithm
- Four cases of 8 - connectedness
- First pass: initial labelling of each foreground pixel

p_{1}	p_{2}	p_{3}
p_{4}	0	p_{5}
p_{6}	p_{7}	p_{8}

- if none of $p_{1} \ldots p_{4}$ are labelled, assign a new label
- if any one of $p_{1} \ldots p_{4}$ are labelled, assign same label
- if more than one of $p_{1} \ldots p_{4}$ are labelled and their labels are identical, assign same label
- if more than one of $p_{1} \ldots p_{4}$ are labelled and their labels are different, assign any of the labels mark different labels of $p_{1} \ldots p_{4}$ as equivalent
- Second pass: renumbering and merging renumber equivalent labels on second pass
- Start with seed pixels
- Append to each seed pixel, all its neighbours with similar properties

Problems with region growing

- what is a good property?
- how do you determine seed pixels
- how many
o where

- Subdivide the image into arbitrary number of sub-regions
- usually four quadrants
- For each of the sub-regions, check if it is homogeneous (with respect to some property)
- Split Step: If it is not, subdivide the region into four smaller quadrants; repeat Step 2
- Merge Step: For each region, check if any of its adjacent regions have similar properties. If so, merge them

Department of Computer and Information Sciences 1 University of Hyderabad

REGION SPLIT-AND-MERGE. . .

- Basic idea is to group pixels according to some common property
- K-Means is the most popular clustering algorithm
- Clusters n points into k partitions
- Inputs: k - the number of clusters
- Start with k seed points as centroids of k clusters
- Assign each point to the nearest seed point
- Recalculate cluster centres after assigning all n points
- Repeat the above two steps until convergence
- Biggest Problem: knowing k
- Variant: Adaptive k-Means

Original

6-Clusters

6-Clusters + CC

There are 3535 connected components in the third image!

- The major drawback of K-Means clustering is selecting the number of clusters
- Adaptive K-Means allows us to get an optimal number of clusters
- Start K-Means algorithm with $N_{c}=2$
- After the clusters converge, measure their goodness using the following criterion
$G(n)=$ ratio of cluster size and average intercluster distance
- Increment N_{c} and repeat the above procedure
- Find the N_{c} that gives the minimum for $G(n)$
- The most recent and some of the best performing segmentation algorithms view images as weighted graphs
- every pixel is initially a node in the graph
- adjacent pixels are connected by edges
- edge weights measure the dissimilarity between pixels
- Spanning Tree forms the basis for many algorithms
o split the graph into two by cutting the largest weight in the Minimum Spanning Tree (MST)
- use the ratios of the largest weights to determine if neighbourhood is uni, bi, or multimodal
- Today, one of the best algorithms is based on Normalized Cuts

- Reference:
D. P. Pedro, F. Felzenswalb. "Efficient Graph Based Segmentation," Int. J. of Computer Vision, 50(2):167-181, 2004.
Implemented by S. Bhagyalaxmi (MTech 2008)
- Use cluster uniformity and distance to other clusters as a criterion
- internal difference of a component

$$
C_{\text {int }}=\max \text { weight in the MST }
$$

- external difference between two components

$$
C_{e x t}=\min \text { weight edge between the two components }
$$

- Ratio of the above is used for segmentation

Original

6 -Clusters + CC

Graph Output

There are 413 connected components in the third image which is a lot better than plain k-means but shows you how much work is left!

k-Means gave more than 5000 components

- Segmentation is easy to conceptualize but extremely difficult to achieve in practice
- Segmentation of simple polygonal objects is doable
- We usually under or over-segment - tigers are particularly notorious :-)
- As listed at the beginning there are many strategies for segmentation but nothing works well
- Finally, let us come to an important question Is segmentation a low-level or high-level process?

