
#include "hipl.h"
int main(int argc, char *argv[])
{

int i;
THEADER *it, *ot;
DATA *ID;
int *RowProfile, *ColProfile, Cspc, Lspc, Wspc;

it=(THEADER *)malloc(sizeof(THEADER));
ot=(THEADER *)malloc(sizeof(THEADER));
ID=(DATA *)malloc(sizeof(DATA));
HIPL Initialise(it,argv[1],0,0,ID);
HIPL Initialise(ot,NULL,1,0,ID);
HIPL AllocateMem(it);
HIPL AllocateMem(ot);

HIPL Transpose(it, ot);
HIPL StoreResult(argv[2], ot);

HIPL FreeMem(it);
HIPL FreeMem(ot);
HIPL Closeall(it);
HIPL Closeall(ot);

exit(0);
}

IPTK – Image Processing Toolkit

S. Murali Krishna, Bh. M. Bharadwaj, P. Krishna Mohan, T. Suresh Babu
Chakravarthy Bhagvati

Dept. of Computer and Information Sciences
University of Hyderabad

CHAPTER

1 OVERVIEW

IPTK is a powerful image processing environment developed by students of the
Department of Computer and Information Sciences at University of Hyderabad.
IPTK works at three levels. There is a GUI that allows lay users to perform simple
image processing operations at the click of a button. The second level is a Tcl/Tk
interpreter with image processing extensions. It provides a fast prototyping envi-
ronment that combines the powerful scripting facilities of Tcl/Tk with the variety
of image processing functions of IPTK. The third level is a library of C-callable func-
tions for complete control over writing new applications. This manual primarily
describes IPTK library and programming with the functions available therein.

1.1 Font Conventions

We use the following fonts to indicate different types of information.

• Words that a user must type verbatim, i.e., as given in the manual are given in
typewriter font.

iptk -f ipgui.tcl &

• Words/phrases that a user must substitute with an appropriate word are given
in an italicized font.

edge detect input-image output-image

In the above example, the user must type the first word as it is but substitute
the name of appropriate images for the remaining two.

• Words/phrases/sentences that are output by IPTK are given in helvetica font.

Error in allocating memory.

• Warnings and other important instructions or idiosyncracies of IPTK are given
in a boxed paragraph using bold text

You must always check the return values from initialise
function

IPTK Reference Manual 2

1.2 Package Contents and System Requirements

IPTK is available on a single floppy disk that contains source files (.c files), makefile
to create the executable version, shell-scripts to create the library and a set of
sample images. It also contains this manual in the file iptk-ref.pdf. Ensure
that the floppy contains the following two files:

1. IPTK.tgz: a gzipped tar containing IPTK

2. iptk-ref.pdf.gz: documentation contained in this manual

IPTK requires about 6MB of disk space when unzipped. System require-
ments are given below.

• Linux/Unix operating system. The C-callable library works even on Win-
dows with a VC++ compiler (tested with Win9x, any volunteers for others?)
but the GUI and the Tcl/TK interpreter extensions do not work

• At least 32MB RAM recommended although IPTK is designed to work with
even 512KB RAM. The more memory there is, the faster IPTK runs

• Tcl/TK (at least Version 8.0, although tested with Version 4.0)

• gcc compiler (any ANSI C compiler will do)

• Monitor capable of 800×600 resolution with at least 8-bit depth (i.e., capacity
to display 256 colours or grayscales)

Dept. of Computer and Information Sciences University of Hyderabad

CHAPTER

2 INSTALLATION

2.1 Instructions for Linux OS

Make sure you have the file IPTK.tgz with you. It is a compressed tar file that
contains the source code and several test images. The size of the gzipped file is
approximately 520KB and fits easily on a floppy.

Follow the instructions below after getting the above two files from me.

1. Create the directory /usr/local/packages/IPTK on your system.
You need to be root to do this

2. Copy IPTK.tgz into /usr/local/packages/IPTK directory

3. Change to /usr/local/packages/IPTK directory

4. Type tar xvzf IPTK.tgz to extract IPTK files

5. Type make to install IPTK. Normally this should create iptk executable
correctly. If there are any problems, they can be fixed by editing the file
makefile

6. The following steps make running IPTKmore convenient

(a) Change to /usr/local/bin directory

(b) Save the following lines into a file called iptk

#!/bin/sh
/usr/local/packages/IPTK/iptk -f \

/usr/local/packages/IPTK/ipgui.tcl

(c) Make the script executable by typing chmod 755 iptk

7. Change back to /usr/local/packages/IPTK directory.

8. Type ./shellfile.sh to create the IPTKlibrary libHIPL.a

9. Do the following to put the library and header files in their correct directories
for compilers to use them later

IPTK Reference Manual 4

(a) Change to /usr/lib directory and create a link to IPTKlibrary by typ-
ing

ln -s /usr/local/packages/IPTK/libHIPL.a .

(b) Change to /usr/include directory and create a link to IPTKheader
file HIPL.h by typing

ln -s /usr/local/packages/IPTK/HIPL.h .

10. Finally, set the environment variable IPTKHOME by typing
export IPTKHOME=/usr/local/packages/IPTK
This may be done once and for all by adding the line in your .bashrc file

You are now done. Change to your home directory and type iptk. It
should bring up the IPTKinterface. To test the installation of IPTKlibrary, copy the
file sample.c into your directory. Compile it by typing

gcc -o sample sample.c -lHIPL -lm

You should get the executable file sample if everything is properly in-
stalled. If there are errors, please verify that you followed all the steps correctly.

You can run sample on any of the test images by typing, for example,

./sample /usr/local/packages/IPTK/IMGS/pisa.pgm pisa-out.pgm

(pisa.pgm is one of the sample images.) The program will create a new
image “pisa-out.pgm” in your directory. Take a look at it.

Dept. of Computer and Information Sciences University of Hyderabad

CHAPTER

3 PROGRAMMING
WITH HIPL LIBRARY

The library that comes with the IPTK package is found with the file name libHIPL.a
in the installation directory. There must be a link to this file from the /usr/lib
directory. The IPTK library will be called HIPL library from now on.

Ensure that /usr/lib/libHIPL.a is a symbolic link to the
file libHIPL.a in IptK installation directory. Otherwise, it will
not be possible to compile any of the image processing

programs.

HIPL library comprises functions at three distinct levels.

1. High-Level Operations

Programming at this level uses image processing functions provided by HIPL
library. There is no need to access individual pixels in the image. Examples
of functions at this level include HIPL Sobel for performing edge de-
tection using Sobel operator, HIPL Connect for computing connected
components, HIPL FFTlp for applying a frequency domain low-pass fil-
ter, etc.

This chapter deals with high-level operations only

2. Pixel-Level Operations

Programming at this level is normally needed to create new image process-
ing operations or for manipulating small regions in images. Users need
to access individual pixels and therefore know about the internal structure
of the HIPL IMAGE data structure provided by the library. Examples
of functions at this level include HIPL Getpart for reading an image,
HIPL Putpart for writing an image, etc.

The most often used level of programming is pixel-level operations. De-
veloping any new image processing operation requires programming at this
level. These operations are explained in the next chapter.

IPTK Reference Manual 6

3. Core Operations

Programming at this level is not needed for anyone except those concerned
with extending IPTK system to handle new image formats or modifying the
basic data structures used in the system. Programmers not only need to
know the data structures used by IPTK but also must have a knowledge
of image formats, underlying memory organization used by IPTK and in-
ternal representation of pixel values. An example function at this level is
HIPL Gettype for finding the format of an image. Core-level program-
ming is not described in this booklet.

Core operations are NOT NEEDED TO DO ANY IMAGE
PROCESSING OPERATION. It is, therefore to be

attempted only with a THOROUGH AND COMPLETE
understanding of IptK. Any mistakes at this level usually

cause entire IptK package to fail.

Compiling HIPL Programs

Any IPTK program needs linking the library libHIPL.a. The general way to
compile (in Linux environment) is by typing the following command:

gcc <source file> -lHIPL -lm -o <executable file
name>

3.1 High-Level Programming

All IPTK programs contain four distinct parts — image related declarations, ini-
tialization section, processing, and finally closing section. These sections are de-
scribed using the example program, sample.c (see Figure 3.1, which comes
with the installation package.

Image Declarations

HIPL library provides HIPL IMAGE data structure to handle images. There is
also an associated data type called HIPL DATA that is used to pass information
efficiently from one image to another. These are the only two new data structures
needed for programming at a high-level. All other standard data types provided
by the ‘C’ language and other user-defined structures may be used as in a regular
program written in ‘C.’

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 7

1 #include <stdio.h>
2 #include <malloc.h>
3 #include <math.h>
4 #include <hipl.h>
5 #include <err_hipl.h>

6 #define SIGMA 2

7 int main(int argc, char *argv[]) {
8 int i;
9 HIPL_IMAGE *it, *ot;

10 HIPL_DATA *ID;
11 extern int HIPL_ERRNO;

12 it=(HIPL_IMAGE *)malloc(sizeof(HIPL_IMAGE));
13 ot=(HIPL_IMAGE *)malloc(sizeof(HIPL_IMAGE));
14 ID=(HIPL_DATA *)malloc(sizeof(HIPL_DATA));

15 HIPL_Initialise(it, argv[1], 0, 0, ID);
16 HIPL_AllocateMem(it);
17 HIPL_Initialise(ot, NULL, 1, 0, ID);
18 HIPL_AllocateMem(ot);

19 HIPL_Gaussavg(it, ot, SIGMA);
20 HIPL_StoreResult(argv[2], ot);

21 HIPL_FreeMem(it);
22 HIPL_FreeMem(ot);
23 HIPL_Closeall(it);
24 HIPL_Closeall(ot);

25 exit(0);
26 }

Figure 3.1: An example high-level program using HIPL Library

In Figure 3.1, Lines 3–5 show the header files necessary for HIPL pro-
grams. Lines 1–2 and 6–8 are standard ‘C’ language. Lines 9–11 show the image-
related declarations. In Line 9, two variables it and ot are declared as images.
The variable ID is declared as HIPL DATA. These two sets of declarations are
common to all HIPL programs and vary only in the specific names and numbers
of variables.

The header files err hipl.h and hipl.hmust be
included for HIPL library to be accessible. As almost all
HIPL library functions include mathematical operations,

the header file, math.hmust also be included.

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 8

Initialization Section

The declared image and HIPL DATA variables must be initialized prior to use. It
is common to declare image variables as pointers to the structure HIPL IMAGE
and therefore memory must be allocated to them. HIPL DATA variables may or
may not be pointers. In the sample program of Figure 3.1, ID is declared as a
pointer and memory should be allocated for it.

Lines 12–18 cover the initialization section. Lines 12–14 allocate memory
for the pointer variables. Line 15 calls the function HIPL Initialise to ini-
tialize the image data structure for reading the image found in the file specified as
the first argument argv[1] to the program. Line 16 allocates the memory for
the image. Line 17 initializes the variable ot for an image structure to be used as
output. As the output image is created by the program, its dimensions and other
parameters such as type, are unknown. The normal approach in HIPL program-
ming is to create an output image structure identical to the input image. This is
achieved by passing HIPL DATA variable ID that is initialized when initializing
the variable it for input. Line 18 allocates memory for the output image based
on the information found in ID.

The parameters for an output image can also be filled in manually by setting
the image parameters using a lower-level IPTK function. This is not normally used
because it requires knowledge of image formats and HIPL IMAGE data structure
details.

Image Processing Section

Over 40 image processing functions are provided by IPTK library. These functions
normally take one image structure as input and another as output. Other param-
eters are sometimes necessary such as a threshold value if performing a threshold
operation. No information about the implementation of HIPL IMAGE structure
is necessary.

The example program in Figure 3.1 performs Gaussian Smoothing operation.
The operation is shown in Line 19 and smooths the input image it with the
result placed in output image ot. Gaussian smoothing requires the width of the
kernel, which is given by the parameter SIGMA. Line 20 stores the output image
structure in the file specified as the second command-line argument argv[2] to
the program.

Closing Section

The closing section is almost always the same for all IPTK programs. Lines 21–
25 illustrate the general set of functions that release all the allocated memory and

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 9

free the data structures and intermediate files created during the execution of the
program.

Compiling and Executing the Sample Program

The sample program in Figure 3.1 is compiled by typing

gcc sample.c -lHIPL -lm -o sample

The resulting executable sample is run on the input image file pisa.pgm
(shown in Figure 3.2(a)) to produce the output shown in Figure 3.2(b). The pro-
gram is run with the following command.

sample pisa.pgm pisa-gauss.pgm

(a) (b)

Figure 3.2: (a) Pisa image (file: pisa.pgm), (b) Result of Gaussian Smoothing with a kernel
of σ = 2 (file pisa-gauss.pgm)

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 10

Dept. of Computer and Information Sciences University of Hyderabad

CHAPTER

4 PROGRAMMING AT
PIXEL LEVEL

Programming at pixel level is the most common use of HIPL library. Hence it
is the most important. The main structure of the program remains the same as
that explained in the previous chapter. The contents of Image Processing section are
no longer functions available in HIPL library but contain code to access individ-
ual pixels. As the other sections remain the same, they are not described in this
chapter.

Image Processing Section

Image processing section contains code that manipulates individual pixels and it is
necessary to know how IPTK handles images. The HIPL IMAGE structure stores
meta-information about the image such as its dimensions and type along with the
actual gray-level information.

Images can be quite large – for example, an A4 document scanned at 300
dpi is nearly 2500 × 3600 pixels in size. It is therefore difficult to declare large
enough arrays. It is inefficient to use a linked list for such large amounts of data.
IPTK solves the problem by using an array whose size is dependent on the system
memory. An image smaller in size than the array is read all at once and data is
directly accessible from the array.

Larger images are read in parts whose sizes are equal to the size of the array
used by IPTK. Several problems arise when images are handled in parts, especially
when dealing with pixels at the boundaries between the parts. Two functions,
HIPL Getpart and HIPL Putpart, are provided in HIPL library for han-
dling all input/output issues. These two functions take care of all boundary effects
and ensure that the programmer feels that the entire image is in memory.

Image processing code is mainly organized in a HIPL Getpart – HIPL Put
part loop. The sample program shown in Figure 4.3 illustrates the use of these
two functions. The program checks the value of each pixel and passes to the out-
put only those values in the range 160− 240. If a pixel value lies outside the range,
it is made 0. Such an operation is called range slicing and is often used to extract
objects of interest.

Lines 1–14 are virtually identical to the program shown in Figure 3.1 and
represent the image declarations and initialization sections. The only difference is that

IPTK Reference Manual 12

the variable ID is no longer a pointer.

Lines 15–32 illustrate pixel-level programming and are absent in the ear-
lier program. HIPL Getpart and HIPL Putpart form the control for a
do...while loop. HIPL Getpart in Line 16 reads either the complete im-
age or a part of the image (see above) and stores the pixel values in the HIPL IMAGE
data structure. The values are found in the array iarr present in the HIPL IMAGE
data structure. HIPL Getpart returns the number of rows read from the im-
age. It returns −1 in case of any error. The error-check is performed in Lines
16–18.

ALWAYS use HIPL Getpart and HIPL Putpart when
processing images EVEN IF YOU KNOW THAT THE
IMAGES ARE SMALL IN SIZE. If the images are small,
there is no loss in efficiency compared to directly using an

array for storing pixel values. HIPL Getpart and
HIPL Putpart do exactly the same in such cases!

The pixel values are read in a double loop – one for the row dimension
and the other for column dimension – and processed appropriately. Note that
the row index i in Line 20 goes from 0 to max, the number of rows read by
HIPL Getpart and not it->img.ROWS, which is the actual number of rows
in the image. The column index j in Line 21 follows the standard pattern of
looping from 0 to it->img.COLS, the actual number of columns in the image.
This is due to the fact that HIPL Getpart always splits the images row-wise
(see [?] for details on the functioning of HIPL Getpart).

Lines 22–25 perform range slicing. Lines 26–29 write the output using
HIPL Put part along with error-checking. HIPL Putpart returns the num-
ber of rows that remain unwritten and its return value is used to terminate the
do...while loop (Line 30). Line 31 calls HIPL Refresh function to re-
set all the parameters inside HIPL IMAGE data structure to default values, thus
making it ready to be processed by HIPL Getpart or HIPL Putpart again.
Lines 32–38 are identical to the Closing section of the code in Figure 3.1.

A common programming error is to forget calling
HIPL Refresh after running HIPL Getpart and

HIPL Putpart.

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 13

1 #include <stdio.h>
2 #include <math.h>
3 #include <hipl.h>
4 #include <err_hipl.h>

5 int main(int argc, char *argv[]) {
6 int i, j;
7 HIPL_IMAGE *it, *ot;
8 HIPL_DATA ID;

9 it=(HIPL_IMAGE *)malloc(sizeof(HIPL_IMAGE));
10 ot=(HIPL_IMAGE *)malloc(sizeof(HIPL_IMAGE));
11 HIPL_Initialise(it, argv[1], 0, 0, &ID);
12 HIPL_AllocateMem(it);
13 HIPL_Initialise(ot, NULL, 1, 0, &ID);
14 HIPL_AllocateMem(ot);

15 do {
16 if ((max = HIPL_Getpart(it)) < 0) {
17 fprintf(stderr, "Error in reading image\n");
18 exit(1);
19 }

20 for (i=0; i<max; i++)
21 for (j=0; j<it->img.COLS; j++)
22 if ((it->iarr[i][j]>160) && (it->iarr[i][j]<=240))
23 ot->iarr[i][j] = it->iarr[i][j];
24 else
25 ot->iarr[i][j] = 0;

26 if ((i = HIPL_Putpart(ot)) < 0) {
27 fprintf(stderr, "Error in writing image\n");
28 exit(1);
29 }

30 } while (ot->P.nleft > 0);

31 HIPL_Refresh(ot, 0);
32 HIPL_StoreResult(argv[2], ot);
33 HIPL_FreeMem(it);
34 HIPL_FreeMem(ot);
35 HIPL_Closeall(it);
36 HIPL_Closeall(ot);
37 exit(0);
38 }

Figure 4.3: Sample program showing pixel-level operations

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 14

The result of compiling and running the program in Figure 4.3 is shown in
Figure 4.4.

(a) (b)

Figure 4.4: (a) Pisa image. (b) Result of range slicing between 160 and 240.

Using Mask-Based Operations

IPTK splits large images into smaller chunks that are processed and written into
temporary files. Mask operations become tricky because of such splitting. Nor-
mally a mask of size K × L, i.e., with K rows and L columns applied to a pixel
P (i, j) requires pixels from row (i − bK

2
c) to (i + bK

2
c) to update the value of

P (i, j). This leads to a problem at the boundary of the image chunk returned by
HIPL Getpart. To overcome this problem, mask size must be initialized using
HIPL Maskinit function. The prototype of this function is

HIPL Maskinit(HIPL IMAGE *it, int rows, int cols,
int orgx, int orgy)

The number of rows and columns in the mask, and the location of the origin are
the parameters. For example,

HIPL Maskinit(it, 3, 3, 1, 1)

initializes a 3 × 3 mask with the origin at the center of the mask.

Remember always to call HIPL Maskinit before using
any mask-based operation.

Dept. of Computer and Information Sciences University of Hyderabad

CHAPTER

5 LIST OF FUNCTIONS

5.1 Core Input/Output Functions

These functions are found in the file pimg core.c. These functions call several
functions defined in the file pimg pgm.c which are not needed by IPTKusers.
These latter functions are only for use by those modifying or adding to the core
input/output library.

1. int HIPL_Initialise(HIPL_IMAGE *T,char *name,short io,
short arr_type,HIPL_DATA *ID)

This function initializes the image data structure. Name should refer to
an existing PGM or PPM image, and memory should already be allocated
for HIPL IMAGE and HIPL DATA. This function should be called before
performing any other HIPL functions.

2. int HIPL_AllocateMem(HIPL_IMAGE *T)

This function allocates memory for image data structure that is already ini-
tialized. This function should also be called before performing any image
processing function.

3. int HIPL_Maskinit(HIPL_IMAGE *it,int rows, int cols,
int orgx,int orgy)

This function initializes mask parameters for many spatial and morphological
operations.

4. int HIPL_Getpart(HIPL_IMAGE *T)

This function reads image data into memory. The amount of data read de-
pends on the available memory. If the image size is smaller than the memory
parameter set with HIPL Setmemory() function, then the entire image
is read into memory. If the size of the image is larger, then a smaller number
of rows are read into memory. It returns the number of rows read in.

This function is used only when adding new image processing functions to
the library. If you use only predefined functions, you don’t need to see this
function or HIPL Putpart() in your code!

IPTK Reference Manual 16

5. int HIPL_Putpart(HIPL_IMAGE *T)

This function is the dual to HIPL Getpart(). It writes out image data
into a temporary file. The same conditions that apply to HIPL Getpart()
are valid for this function too.

This function is used only when adding new image processing functions to
the library. If you use only predefined functions, you don’t need to see this
function or HIPL Getpart() in your code!

6. int HIPL_StoreResult(char *name,HIPL_IMAGE *T, int type)

This function writes out image data to a specified output file. The data
may be written out in either PPM or PGM format as specified by type
parameter. If the input image is PPM and PGM is specified as the output
format, then only the RED component is stored. If the original is PGM and
the output format is specified as PPM, then the image is displayed as a RED
image.

7. int HIPL_Closeall(HIPL_IMAGE *T)

This function closes all intermediate and image files opened for reading or
writing.

8. int HIPL_FreeMem(HIPL_IMAGE *T)

This function frees the memory allotted for images using HIPL AllocateMem
function.

9. int HIPL_Refresh(HIPL_IMAGE *T,int Flag)

This function resets the various parameters to their initial values. Typically,
this is called after either HIPL Getpart() or HIPL Putpart() func-
tions.

This function is needed only if you are adding a new image processing func-
tion to the library.

10. int HIPL_ReadImage(HIPL_IMAGE *T, char *name, short io,
short arr_type, HIPL_DATA *ID)

This function reads a PPM or a PGM image. It combines the functionality
of HIPL Initialise() and HIPL AllocateMem() functions.

11. int HIPL_SpecifyOutParams(HIPL_DATA *ID, int NRows,
int NCols, int Type)

This function specifies the parameters for initialising and allocating memory
to an output image.

12. void HIPL_Error(char *msg)

This function outputs an error message to stderr.

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 17

13. void HIPL_Setmemory(int Memory)

This function sets the size of memory blocks that will be allocated by HIPL
AllocateMem() function. This block will be used by HIPL Getpart()
and HIPL Putpart() functions to process large images.

The following functions found in the file pimg pgm.c are called by the
functions listed above. However, these functions need very rarely be called by the
programmers or users of IPTK. They will not be described here but anyone intested
may refer to IPTK Masters’ thesis[?].

1. HIPL_ReadImagePGM(FILE *fp1,HIPL_IMAGE *t)

2. HIPL_GetImageHeaderPGM(FILE *fp, HIPL_IMAGE *t)

3. HIPL_GetImageTypePGM(HIPL_IMAGE *t)

4. HIPL_GetImageRowsPGM(HIPL_IMAGE *t)

5. HIPL_GetImageColsPGM(HIPL_IMAGE *t)

6. HIPL_WriteImagePGM(FILE *fp, HIPL_IMAGE *t)

7. HIPL_PutImageHeaderPGM(FILE *fp, HIPL_IMAGE *t)

8. HIPL_GetImageHeaderPPM(FILE *fp, HIPL_IMAGE *t)

9. HIPL_ReadImagePPM(FILE *fp1,HIPL_IMAGE *t)

10. HIPL_WriteImagePPM(FILE *fp, HIPL_IMAGE *t)

5.2 Point Operation Functions

1. int HIPL_Negative(HIPL_IMAGE *T1,HIPL_IMAGE *T2)

This function performs digital negative operation on the input image T1 and
stores the result in T2. Returns 0 upon success and a positive value in case
of errors.

2. int HIPL_Differ(HIPL_IMAGE *it1,HIPL_IMAGE *it2,
HIPL_IMAGE *ot)

This function outputs the differences in pixel values between two input im-
ages it1 and it2 as the output image ot. The two input images must
have the same dimensions.

3. int HIPL_SIMax(HIPL_IMAGE *it1,HIPL_IMAGE *it2,
HIPL_IMAGE *ot)

This function superimposes the input image it2 on image it1. The pixel
value in the output image ot is the maximum of the two corresponding
pixels from the input images.

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 18

4. int HIPL_SIAvg(HIPL_IMAGE *it1,HIPL_IMAGE *it2,
HIPL_IMAGE *ot)

This function superimposes the input image it2 on image it1. The pixel
value in the output image ot is the average of the two corresponding pixels
from the input images.

5. int HIPL_HFlip(HIPL_IMAGE *it,HIPL_IMAGE *ot)

This function outputs a mirror-reversed image (ot) of the original (it).

6. int HIPL_Range(HIPL_IMAGE *it,HIPL_IMAGE *ot,int lo,int hi)

This function performs range slicing on the input image it and places the
result in the output image ot. The output range is lo < g < hi. Range
gi − gi+1 is empty range.

7. int HIPL_Transpose(HIPL_IMAGE *it,HIPL_IMAGE *ot)

This function transposes the rows and columns of the input image it and
places the result in ot. The effect is that of rotation by 90o in clockwise
direction. This function is defined only on square images, i.e, number of
rows is equal to number of columns.

8. int HIPL_Thresh(HIPL_IMAGE *it,HIPL_IMAGE *ot,int grey)

This function converts a grayscale image into a binary image by thresholding
the pixel intensities. All pixels with intensity ≥ grey are set to white while
the others are all set to black.

9. int HIPL_Str(HIPL_IMAGE *it,HIPL_IMAGE *ot,
long int hist[257],int gmax,int gmin)

This function performs histogram stretching. The input range is determined
automatically from the image and the output range is given by gmin -
gmax. Input image is given by it, and the histogram stretched image is
in ot. The array hist[257], containing the image gray level histogram,
must be calculated prior to calling this function by using HIPL FindHisto
gram function.

10. int HIPL_Equalise(HIPL_IMAGE *it,HIPL_IMAGE *ot,
long int hist[257])

This function performs histogram equalization. The input image is given by
it and the output image by ot. The array hist[257], containing the
image histogram, must be calculated prior to calling this function by using
HIPL FindHistogram function.

11. int HIPL_Lstretch(HIPL_IMAGE *it,HIPL_IMAGE *ot)

This function performs logarithmic stretching of image histogram. The in-
put image is given by it and the resulting image is ot.

Dept. of Computer and Information Sciences University of Hyderabad

IPTK Reference Manual 19

12. int HIPL_ImgData(HIPL_IMAGE *it,long int hist[257],
HIPL_DATA *ID)

This function computes several statistical and texture measures on the given
input image it. The texture and statistical features are stored in the variable
ID.

13. int HIPL_FindHistogram(HIPL_IMAGE *it,
long int hist[257])

This function computes the gray level histogram for the input image it.

14. int HIPL_RangeStretch(HIPL_IMAGE *it,
HIPL_IMAGE *output,
long int hist[257],int iter)

This function performs incremental gray level stretching on the input image
it. The parameter iter specifies how many times the incremental stretch-
ing is done on the input. As iter is increased, the image becomes a binary
image. The array hist[257] should be initialized prior to calling this
function.

5.3 Spatial Operations

1. int HIPL_Maskimg(HIPL_IMAGE *it,HIPL_IMAGE *ot,
int **Mask,double factor)

This function convolves the input image it with a generic mask given by
Mask and places the result in ot. The parameter factor is the divisor of
the result of convolution. For example, a 3× 3 mask containing all 1s with a
factor of 9 is the simple average mask.

2. int HIPL_Fmaskimg(HIPL_IMAGE *it,HIPL_IMAGE *ot,
double **Mask,double factor)

This function is identical to HIPL Maskimg function described above ex-
cept that the mask values are double precision numbers and not integers.

Dept. of Computer and Information Sciences University of Hyderabad

