1. Compute the value of $\sin (x)$ using the below Taylor series expansion. Your program should read number of terms ($n>10$) and value of x (degrees) as the input and compute the approximate value of $\sin (x)$ considering the first n terms of the series. Here user enters x in degrees ($0 \leq x \leq 360$) and you should convert it to radians using $r=x * \pi /$ 180. You can use macro to define the π value using \#define PI 3.14159265 and use it in your program.

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

2. The following scheme is used to compute the student grade of a course from the marks secured out of 100 .

Marks	Grade
$0-49$	F
$50-59$	D
$60-69$	C
$70-79$	B
$80-100$	A

Compute how many students awarded each grade and display the frequency as a bar chart (horizontal) using single "*" for each student. Use sentinel controlled repetition (-1 as sentinel value) in reading the students marks. Use else-if ladder/switch case to compute the grade and the corresponding frequency.
3. (Optional) Modify the program 2 to print the bar chart vertically.

Sample bar chart when the class has 7-A, 10-B, 3-C, 7-D and 1-F grades.

