

Historical Facts

IPv6

Auto-Configuratio

ULP

IPv6 Mobili

API

Integration

Conclusior

IPv6 Tutorial

Association G6

G6 IPv6 Tutorial

< ロ > < 団 > < 臣 > < 臣 > <</p>

æ

Contribution

Contributions and G6 group Contribution

Historical Facts

IPv6

Auto-Configurati

ULF

IPv6 Mobility

API

Integration

Conclusion

- Main authors
 - Laurent Toutain, ENST-Bretagne, France
 - Bernard Tuy, Renater, France
 - Mohsen Souissi, AFNIC, France
- Contributors
 - Octavio Medina, ENST-Bretagne, France
 - Vladimir Ksinant, 6WIND, France
 - Vincent Levigneron, AFNIC, France
 - Thomas Noel, LSIIT, France
 - Alain Durand, Sun Microsystems, USA
 - Alain Baudot, France Telecom R&D, France
 - Bill Manning, ISI, USA
 - David Kessens, Qwest, USA
 - Pierre-Emmanuel Goiffon, Renater, France
 - Jérôme Durand, Renater, France
 - Francis Dupont, Celar, France
 - Jean-Luc Richier, IMAG, France
 - Simon Muyal, Renater, France
 - Ana Minaburo, ENST-Bretagne, France
 - Jean-Marie Bonnin, ENST-Bretagne, France
 - Bruno Stévant, ENST-Bretagne, France

G6 group

- Contributions and G6 group Contribution G6 group
- Historical Facts
- IPv6
- Auto-Configuratio
- ULP
- IPv6 Mobility
- API
- Integratio
- Conclusion

- Group of IPv6 testers in France, Tunisia, Senegal,
- Academic & industrial partners
 - Renater, CNRS, ENST Bretagne, INRIA, Universities
 - AFNIC, 6Wind, Bull, ...
- Launched in 1995 by:
 - Alain Durand
 - Bernard Tuy
- Is today a legal association under French Law (1901)
 - Bernard Tuy, President
- For further information: http://www.g6.asso.fr

▲□ ► < □ ► </p>

G6 charter

- Contributions and G6 group Contribution G6 group
- Historical Facts
- IPv6
- Auto-Configuration
- ULF
- IPv6 Mobility
- API
- Integratio
- Conclusion

- Share experience gained from experimentations
- Spread IPv6 information
 - Book published (OReilly)
 - IPv6, Théorie et pratique , 4th edition (November 2005)

< □ > < □ >

- Tutorials and trainings (ISPs, Engineers, netadmins,)
- Active in RIPE & IETF working groups
- Responsible for Renater IPv6 pilot service design

IPv6 Header: Simpler

Contributions and G6 group

Historical Facts

IPv6

IPv6 Header Extensions Addresses ICMPv6

Auto-Configuration

ULP

Pv6 Mobility

API

Integration

Conclusion

Definition

- IPv6 header follows the same IPv4 principle:
 - fix address size ... but 4 times larger
 - alignment on 64 bit words (instead of 32)
- Functionalities never used in IPv4 are supressed

Goal :

- Forward packet as fast as possible
- Less treatments in routers
- More functionalities at both ends

< 日 > < 同 > < 三 > < 三 >

IPv4 Header

- Contributions and G6 group
- Historical Facts

IPv6

- IPv6 Header Extensions Addresses ICMPv6
- Auto-Configuration
-
- IPv6 Mobility
- API
- Integration
- Conclusion

0				
6	DiffServ		Flow Label	
	Payload Length		Next header	Hop Limit
	Source Address			
Destination Address				
Layer 4 or extensions				

<ロ> <部> < 部> < き> < き>

æ

Is it enough for the future ?

- Contributions and G6 group
- Historical Facts
- IPv6
- IPv6 Header Extensions Addresses ICMPv6
- Auto-Configuration
- ULP
- IPv6 Mobility
- API
- Integration
- Conclusion

- Address length
 - Between 1 564 and 3 911 873 538 269 506 102 addresses by m^2
 - 60 000 trillion trillion addresses per inhabitant of the earth
 - Addresses for every grain of sands in the world
- Justification of a fix address length

Warning:

- An address for everything on the network and not an address for everything
- No addresses for whole life:
 - Depend of your position on the network
 - ISP Renumbering may be possible

• □ ▶ • □ ▶ • □ ▶ • □

Notation

Contributions and G6 group

Historical Facts

IPv6

IPv6 Header Extensions Addresses ICMPv6

Auto-Configuratio

ULP

IPv6 Mobility

API

Integration

Conclusion

- Base format (a 16 byte Global IPv6 Address):
 - 2001:0660:3003:0001:0000:0000:6543:210F
- Compact Format:

2001:0660:3003:0001:0000:0000:6543:210F

- remove 0 on the left of each word
- estimate one sequence of zeros by ::
- an IPv4 address may also appear : ::FFFF:123.12.34.56

Warning

2001:660:3::/40 is in fact 2001:660:0003::/40 and not 2001:660:0300::/40

Notation

Contributions and G6 group

Historical Facts

IPv6

IPv6 Header Extensions Addresses ICMPv6

Auto-Configuratio

ULP

IPv6 Mobility

API

Integration

Conclusion

- Base format (a 16 byte Global IPv6 Address):
 - 2001:0660:3003:0001:0000:0000:6543:210F
- Compact Format:

2001:660:3003:1:0:0:6543:210F

- remove 0 on the left of each word
- Substitute one sequence of zeros by ::
- an IPv4 address may also appear : ::FFFF:123.12.34.56

Warning

2001:660:3::/40 is in fact 2001:660:0003::/40 and not 2001:660:0300::/40

Notation

Contributions and G6 group

Historical Facts

IPv6

IPv6 Header Extensions Addresses ICMPv6

Auto-Configuratio

ULP

IPv6 Mobility

API

Integration

Conclusion

- Base format (a 16 byte Global IPv6 Address):
 - 2001:0660:3003:0001:0000:0000:6543:210F
- Compact Format:

2001:660:3003:1::6543:210F

- remove 0 on the left of each word
- Substitute one sequence of zeros by ::
- an IPv4 address may also appear : ::FFFF:123.12.34.56

Warning:

2001:660:3::/40 is in fact 2001:660:0003::/40 and not 2001:660:0300::/40

Addressing scheme

- Contributions and G6 group
- Historical Facts
- IPv6
- IPv6 Heade Extensions Addresses ICMPv6
- Auto-Configuration
- ULP
- IPv6 Mobility
- API
- Integration
- Conclusion

- RFC 4291 defines current IPv6 addresses
 - loopback (::1)
 - link local (FE80::/10)
 - global unicast (2000::/3)
 - multicast (FF00::/8)
- Use CIDR principles:
 - Prefix / prefix length notation
 - 2001:660:3003::/48
 - 2001:660:3003:2:a00:20ff:fe18:964c/64
- Interfaces have several IPv6 addresses
 - at least a link local and a global unicast addresses

Addressing Space Utilization

Contributions and G6 group

Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuration

ULP

IPv6 Mobility

API

Integratior

Conclusion

0000::/8 Reserved by IETF [RFC4291] 0100::/8 Reserved by IETF [RFC4291] 0200::/7 Reserved by IETF [RFC4048] 0400::/6 Reserved by IETF [RFC4291] 0800::/5 Reserved by IETF [RFC4291] 1000::/4 Reserved by IETF [RFC4291] 2000::/3 Global Unicast [RFC4291] 4000::/3 Reserved by IETF [RFC4291] 6000::/3 Reserved by IETF [RFC4291] 8000::/3 Reserved by IETF [RFC4291] A000::/3 Reserved by IETF [RFC4291] C000::/3 Reserved by IETF [RFC4291] E000::/4 Reserved by IETF [RFC4291] F000::/5 Reserved by IETF [RFC4291] F800::/6 Reserved by IETF [RFC4291] FC00::/7 Unique Local Unicast [RFC4193] FE00::/9 Reserved by IETF [RFC4291] FE80::/10 Link Local Unicast [RFC4291] FEC0::/10 Reserved by IETF [RFC3879] FF00::/8 Multicast [RFC4291]

Source:

http://www.iana.org/assignments/ipv6-address-space

Address Format

Contributions and G6 group

Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuratior

ULP

Pv6 Mobility

API

Integratio

Conclusion

Global Unicast Address:

3	45	16	64			
001	Global Prefix	SID	Interface ID			
	public topology local topology link address given by the provider assigned by network engineer auto or manual configuration					
10 54 64						
FE8	00		Interface ID			

link address auto-configuration

æ

<ロ> <同> <同> < 同> < 同>

Link Local Scoped Addresses

Contributions and G6 group

Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuratio

ULP

IPv6 Mobility

API

Integration

Conclusion

• Global Address, the prefix designates the exit interface

- Link-Local address, the prefix is always fe80::/10
 - The exiting interface is not defined
 - A %iface, can be added at the end of the address to avoid ambiguity.
- Example:

Routing tables

Internet6: Destination	Gateway	Flags	Netif Expire
default	fe80::213:c4ff:fe69:5f49%en0	UGSc	en0

(日)

How to Construct an IID from MAC Address

Contributions and G6 group

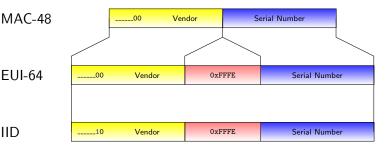
Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuration

ULI


IPv6 Mobilit

API

Integration

Conclusion

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

• There is no conflicts if IID are manually numbered: 1, 2, 3, ...

How to Construct an IID from MAC Address

Contributions and G6 group

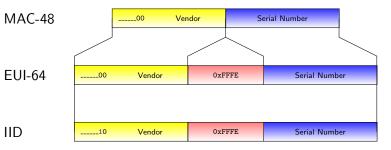
Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuration

IPv6 Mobilit


API

Integration

Conclusion

• 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)

- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

• There is no conflicts if IID are manually numbered: 1, 2, 3, ...

Other kind of addresses: Multicast

Contributions and G6 group

Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuration

ULP

Pv6 Mobility

API

Integration

Conclusion

Generic Format:

8	4	4	112
FF	xRPT	scope	Group ID

- T (Transient) 0: well known address 1: temporary address
- P (Prefix) 1 : assigned from a network prefix (T must be set to 1)
- R (Rendez Vous Point) 1: contains the RP address (P and T set to 1)
- Scope :
 - 1 node-local
 - 2 link-local
 - 3 subnet-local
 - 4 admin-local
 - 5 site-local
 - 8 organisation-local
 - E global

< 日 > < 同 > < 三 > < 三 >

Some Well Known Multicast Addresses

Contributions and G6 group

Historical Facts

IPv6

IPv6 Heade Extensions Addresses ICMPv6

Auto-Configuration

ULP

Pv6 Mobility

API

Integration

Conclusion

8	4	4	112
FF	0	scope	Group ID

FF02:0:0:0:0:0:0:1 All Nodes Address
FF02:0:0:0:0:0:0:2 All Routers Address
FF02:0:0:0:0:0:0:5 OSPFIGP
FF02:0:0:0:0:0:0:6 OSPFIGP Designated Routers
FF02:0:0:0:0:0:0:9 RIP Routers
FF02:0:0:0:0:0:0:FB mDNSv6
FF02:0:0:0:0:0:1:2 All-dhcp-agents
FF02:0:0:0:0:0:1:FFXX:XXXX Solicited-Node Address
FF05:0:0:0:0:0:1:3 All-dhcp-servers

Web:

see: http://www.iana.org/assignments/ipv6-multicast-addresses for all multicast addresses

ICMPv6

Contributions and G6 group

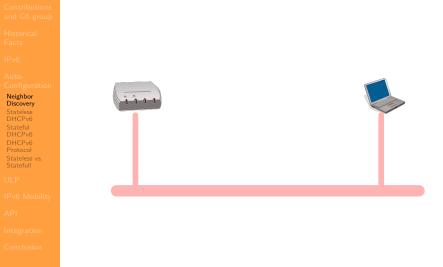
Historical Facts

IPv6

IPv6 Header Extensions Addresses ICMPv6

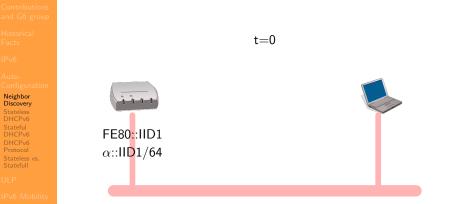
- Auto-
- ULP
- IPv6 Mobility

API

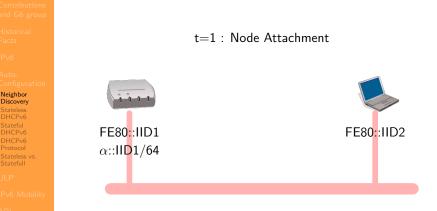

Integration

Conclusion

- ICMPv6 is different from ICMP for IPv4
- Functionalities are extended and organized better
- Two functions :
 - Error occurs during forwarding (value < 128)
 - 1 Destination Unreachable (0 no route to destination, 1
 communication with destination administratively prohibited, 3 - address unreachable, 4 - port unreachable)
 - 2 Packet Too Big
 - 3 Time Exceeded (0 hop limit exceeded in transit, 1 fragment reassembly time exceeded)
 - 4 Parameter Problem (0 erroneous header field encountered, 1 - unrecognized Next Header type encountered, 2 - unrecognized IPv6 option encountered)
 - Management Applications (value > 128) :
 - ping6, traceroute6, neighbor discovery, multicast listener discovery,...

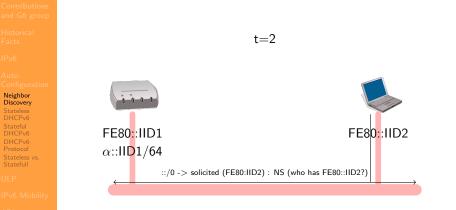

< ロ > < 同 > < 回 > < 回 > < 回 > <

<ロト <部ト < 注ト < 注ト



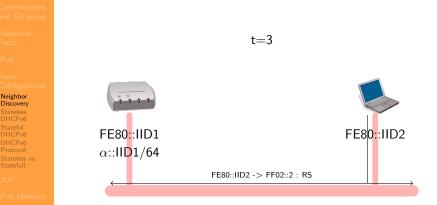
Time t=0: Router is configured with a link-local address and manually configured with a global address (α ::/64 is given by the network manager)

(日) (同) (三) (三)

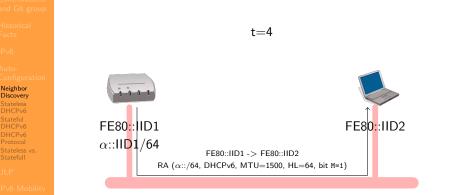

Integrati

Conclusion

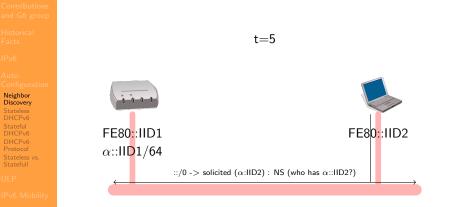
Host constructs its link-local address based on the interface MAC address


(日)

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own address: no answers means no other host as this value).



Host sends a Router Solicitation to the All Router Multicast group using the newly link-local configured address.


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Router answer directly to the host using Link-local addresses. The answer may contain a/several prefix(es). Router can also mandate hosts to use DHCPv6 to obtain prefixes (state full auto-configuration) and/or other parameters (DNS servers...): Bit $M \stackrel{=}{=} 1$.

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own global address: no answers means no other host as this value).

<ロ> (日) (日) (日) (日) (日)

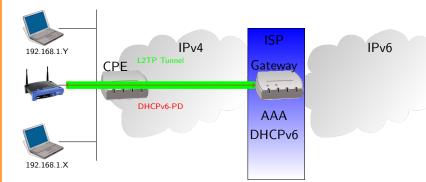
Softwires: H&S Architecture

Historical Facts

IPv6

Auto-Configuratio

ULP


IPv6 Mobilit

API

Integration IPv6 integration in core network IPv6 integration for ISP

IPv6 Integration in administrated

Conclusion

IPv6 prefix for Home Network provided by DHCPv6

- Standard prefix delegation
- Link with AAA for prefix management

< ロ > < 同 > < 三 > <