1.

OPERATING SYSTEMS

Introduction

Objective: In this course, a detailed view of the kernel s given. This includes a detailed description
of the way system calls work, the extended process state diagram i process management, detaiked
file system management description including the

data structures such as inodes used to mantain metadata and ntroduction to device drivers as part of
the I/O subsystem.

This course excludes user space application development programming such as using IPC
or thread-based programming. This is included in the Network Programming course.

Credits: 3-0-1
Prerequisites
C programming, Data and File Structures.
Course Outline

UNIT - I: Introduction and Operating System Structures

Operating Systems Functiona lity, Computer Organization and Architecture, OS Operations, Kernel
Data Structures, OS Services, User interfaces to OS, Programmer mterfaces to OS, OS Structure,
System Boot.

UNIT - II: Process and Thread Manage ment

Process Concept, Process operations, Process Scheduling, Extended Process State Diagram (To be
done from Stallings, Operatmg Systems: Internals and Design Principks), Process Context Switch in
detail including System Callinter- face and implementation (To be done from Crowley: Operating
Systems: A design-oriented approach), Interprocess Communication: Pipes, Named Pipes, Shared
Memory, Process Synchronization: Signals, Mutexes, Semaphores, Monitors (To be done from
Silberschatz et al. and Stevens), Thread Management: thread creation, thread scheduling, thread
synchronization, Deadlocks : Resource Allocation Graphs, deadlock detection, prevention and
avoidance, recovery from deadlock.

UNIT - III: Memory Manage ment

Memory allocation techniques : paging and segmentation, Swapping, structure of the page table,
Virtual memory: demand paging, copy-on-write, Page replacement, allocation of frames, kernel
memory allocation, thrashing, memory-mapped files, Translation-Lookaside Buffer (TLB),
multiprocessor concerns.

UNIT - IV: File System Management

Disk management: formatting, boot block, swap-space management, RAID structure, Disk scheduling
algorithms: elevator, C-SCAN, File concept, Access methods Directory structure, File system mount
and unmount operations, file sharing, protection, file system structure, file system mplementation:
file system metadata storage structures such as node (To be done from Bach: The Design of the Unix
05), allocation methods, free space management, efficiency and performance ncluding disk cache
and recovery from failures.

27



UNIT - V: 1/O Management

I/O devices: polling, interrupt-driven, DMA, Application I/O mterface: character and block devices,
network devices, clocks and timers, nonblocking and asynchronous I/O, vectored I/O, Kernel 1/O
mterface: I/O scheduling, Buffering, Caching, Spooling and device reservation, error handling, I/O
protection, Kernel data structures Transforming I/O requests to hardware operations, Performance.

UNIT - VI: Case Studiesl
Lmux, Unix: Solaris/AIX, Windows 7.

Reading Material

Text Books
Abraham Silberschatz, Peter Baer Galvin and Greg Gagne. Operating System Concepts , 9th edition,
Wiky

Reference Books
1. Charles Crowley. Operating Systems : A Design-Oriented Approach, Prentice-Hall India.

W. Richard Stevens, . Advanced Programming m Unix Environment, Pearson Education.

W. Richard Stevens. Unix Network Programming, vol. 2, Pearson Education.

William Stallings. Operating Systems: Internals and Design Principles, Pearson Education.
Maurice J. Bach. The Design of the Unix Operatmg System, Prentice-Hall India.
Robert Love. Linux Kemel Development, Pearson Education.
Thomas Anderson and Michael Dahlin. Operating Systems: Principles and Practice, 2nd
edition, Recursive Books.
Suggested Assignme nts

A e

[E—

Modify the kernel to inchade the statement “Hello, World”, compile the kernel and modify
the boot loader to add the new version.

Compare the popular file systems: ext3, NTFS and XFS.

Implement small modifications of Producer-Consumer problem.

Implement a user level ps command by walking through the /proc directory.

Implement page tables and virtual-physical address mapping using the page tables. In this,
the mput can consist of a fik contaming the processor arch. (16/32/64-bit), page size,
available RAM. For each process the file will contain the size of the executable and/or page
no. and permissions on it and the frame start address. Then a set of virtual addresses with the
operation (r/w/x) are input to the program for which the corresponding physical address must
be returned if it is a valid virtual address and also whether the operation attempted is legalas
per the permissions on the page.

6. Go through the /ete/fstab and manipulate it to mount partitions with different settings and/or
use mount/umount commands to mount and unmount partitions and understand the concept
of logical volumes.

7. Implement a simple file system such as FAT using FUSE APL

Implement a simple software device driver.

Wk W

=

28



	OS
	OS1

