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Parallel Algorithm Design 
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Outline 

• Task/channel model 

• Algorithm design methodology 

• Case studies 
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Task/Channel Model 

• Parallel computation = set of tasks 

• Task 

– Program 

– Local memory 

– Collection of I/O ports 

• Tasks interact by sending messages through 
channels 

• At input port task must wait until the value appears, 
means task is blocked 

• In this model receiving is a synchronous, while 
sending is an asynchronous operation 
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Task/Channel Model 

Channel Task 

Source: M.J. Quinn  
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Foster’s Design Methodology* 

• Partitioning 

• Communication (Concentration on inherent parallelism) 

• Agglomeration 

• Mapping (Concentration on implementation on real HW) 

 

 “It delays the machine dependent considerations at 

the later stage “ 

 
* Foster, Ian. Designing and Building Parallel Programs: Concepts and Tools for 

Parallel Software Engineering, Reading, MA: Addison-Wesley, 1995 

6 
       Parallel Computing (Intro-05): Rajeev Wankar 

 

Foster’s Methodology 

Source: M.J. Quinn  
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1.Partitioning 

• Dividing computation and data into pieces 

• Domain decomposition 

– Divide data into pieces 

– Determine how to associate computations with the 

data 

• Functional decomposition 

– Divide computation into pieces 

– Determine how to associate data with the 

computations 
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1.Partitioning 

• Focus is on most frequently accessed data structure 

• In the matrix, we can partition data into  

– Collection of 2-D slice: resulting in a 1-D collection 

of primitive tasks 

– Collection of 1-D slice: resulting in a 2-D collection 

of primitive tasks 

– Consider each elements of the matrix individually: 

3-D collection of primitive tasks 
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Domain Decompositions 

Source: M.J. Quinn  
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1.Partitioning Checklist 

• At least 10x more primitive tasks than processors in 

target computer 

• Minimize redundant computations and redundant 

data storage (If not, design does not work well when 

problem size increases) 

• Primitive tasks roughly the same size (If not, load 

balancing problem) 

• Number of tasks an increasing function of problem 

size (If not, not scale well) 
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2.Communication 

• Determine values passed among tasks 

• Local communication 

– Task needs values from a small number of other 

tasks 

– Create channels illustrating data flow 

• Global communication 

– Significant number of tasks contribute data to 

perform a computation 

– Don’t create channels for them early in design 
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2.Communication Checklist 

 Communications are overhead in parallel algorithms, 

minimizing them is an important goal 

 

• Communication operations balanced among tasks 

• Each task communicates with only small group of 

neighbors 

• Tasks can perform communications concurrently 

• Task can perform computations concurrently 
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3.Agglomeration 

• Grouping tasks into larger tasks 

• Goals 

– Improve performance 

– Maintain scalability of program 

– Simplify programming 

• In MPI programming, goal often is to create one 

agglomerated task per processor 
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Agglomeration Can Improve Performance 

• Eliminate communication between primitive tasks 

agglomerated into consolidated task (specially when 

the tasks cannot perform their operations in parallel) 

• Combine groups of sending and receiving tasks (for 

reducing message latency) 

Source: M.J. Quinn  
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4.Mapping 

• Process of assigning tasks to processors 

• Centralized multiprocessor: mapping done by 

operating system 

• Distributed memory system: mapping done by user 

• Goals of mapping 

– Maximize processor utilization 

– Minimize inter-processor communication 
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Mapping Example 

Source: M.J. Quinn  
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Optimal Mapping 

• Finding optimal mapping is NP-hard 

• Must rely on heuristics 
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Definition 

• In local communication, each task communicates with a small set 
of other tasks (its ``neighbors''); in contrast, global communication 
requires each task to communicate with many tasks.  

• In structured communication, a task and its neighbors form a 
regular structure, such as a tree or grid; in contrast, unstructured 
communication networks may be arbitrary graphs.  

• In static communication, the identity of communication partners 
does not change over time; in contrast, the identity of 
communication   partners in dynamic communication structures 
may be determined by data computed at runtime and may be 
highly variable.  

• In synchronous communication, producers and consumers 
execute in a coordinated fashion, with producer/consumer pairs 
cooperating in  data transfer operations; in contrast, asynchronous 
communication may require that a consumer obtain data without 
the cooperation of the producer.  
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Mapping Decision Tree 

• Partition is done using domain decomposition, tasks are small, 

communication is regular, create p agglomerated tasks on p 

processors 

• Static number of tasks 

– Structured communication 

• Constant computation time per task 

– Agglomerate tasks to minimize comm 

– Create one task per processor 

• Variable computation time per task 

– Cyclically map tasks to processors 

– Unstructured communication 

– First run a static load balancing algorithm before 

determining the strategy  

• Dynamic number of tasks 
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Mapping Strategy 

• Static number of tasks 

• Dynamic number of tasks 

– Frequent communications between tasks 

• Use a dynamic load balancing algorithm 

– Many short-lived tasks 

• Use a run-time task-scheduling algorithm 
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Mapping Checklist 

• Considered designs based on one task per processor 

and multiple tasks per processor 

• Evaluated static and dynamic task allocation 

• If dynamic task allocation chosen, task allocator is 

not a bottleneck to performance 

• If static task allocation chosen, ratio of tasks to 

processors is at least 10:1 
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Decision tree to choose a mapping strategy  
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Static number of 
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Structured 
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communication 
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minimize 
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Create one task 
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25 
       Parallel Computing (Intro-05): Rajeev Wankar 

 

Reduction 

• Given associative operator  

• a0  a1  a2  …  an-1 

• Examples 

– Add 

– Multiply 

– And, Or 

– Maximum, Minimum 
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Parallel Reduction Evolution 

Source: M.J. Quinn  

Observations: 

1. If x time required 

for a task to 

communicate 

another task  

2. y time is required 

for addition then 

3. Total time will be 

(n-1)(x+y) 
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Parallel Reduction Evolution 

Source: M.J. Quinn  

Observations:Total time will be now (n/2-1)(x+y) 
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Parallel Reduction Evolution 

Source: M.J. Quinn  
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Binomial Trees 

Subgraph of hypercube 

Observations: 

 Continuing this way we have n/2 semi-root tasks 

Total time will be log n  
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Finding Global Sum 

4 2 0 7 

-3 5 -6 -3 

8 1 2 3 

-4 4 6 -1 
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Finding Global Sum 

1 7 -6 4 

4 5 8 2 
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Finding Global Sum 

8 -2 

9 10 
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Finding Global Sum 

17 8 
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Finding Global Sum 

25 

Binomial Tree 
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Agglomeration 

Observations: 

1. Number of tasks 

are static 

2. Computations 

per task are trivial 

3. Communication 

pattern is regular    
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Agglomeration 

sum 

sum sum 

sum 

Observations: 

1. If x time required 

for a task to 

communicate 

another task  

2. y time is required 

for binary 

operation then 

3. Total time will be 

(n-1)(x+y) 

37 
       Parallel Computing (Intro-05): Rajeev Wankar 

 

Agglomeration 

sum 

sum sum 

sum 

Observations: 

1. If we have p 

processors 

2. Time require to 

compute sub total 

is  

3. Reduction 

require x+y time 

4. With              

communications 

overall time  

  y)1( n/p

 p log
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Agglomeration 

sum 

sum sum 

sum 

Total time: 

 

              +            (x+y)   y)1( n/p  p log


