
1

1
 Parallel Computing (Intro-05): Rajeev Wankar

Parallel Algorithm Design

2
 Parallel Computing (Intro-05): Rajeev Wankar

Outline

• Task/channel model

• Algorithm design methodology

• Case studies

2

3
 Parallel Computing (Intro-05): Rajeev Wankar

Task/Channel Model

• Parallel computation = set of tasks

• Task

– Program

– Local memory

– Collection of I/O ports

• Tasks interact by sending messages through
channels

• At input port task must wait until the value appears,
means task is blocked

• In this model receiving is a synchronous, while
sending is an asynchronous operation

4
 Parallel Computing (Intro-05): Rajeev Wankar

Task/Channel Model

Channel Task

Source: M.J. Quinn

3

5
 Parallel Computing (Intro-05): Rajeev Wankar

Foster’s Design Methodology*

• Partitioning

• Communication (Concentration on inherent parallelism)

• Agglomeration

• Mapping (Concentration on implementation on real HW)

 “It delays the machine dependent considerations at

the later stage “

* Foster, Ian. Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering, Reading, MA: Addison-Wesley, 1995

6
 Parallel Computing (Intro-05): Rajeev Wankar

Foster’s Methodology

Source: M.J. Quinn

4

7
 Parallel Computing (Intro-05): Rajeev Wankar

1.Partitioning

• Dividing computation and data into pieces

• Domain decomposition

– Divide data into pieces

– Determine how to associate computations with the

data

• Functional decomposition

– Divide computation into pieces

– Determine how to associate data with the

computations

8
 Parallel Computing (Intro-05): Rajeev Wankar

1.Partitioning

• Focus is on most frequently accessed data structure

• In the matrix, we can partition data into

– Collection of 2-D slice: resulting in a 1-D collection

of primitive tasks

– Collection of 1-D slice: resulting in a 2-D collection

of primitive tasks

– Consider each elements of the matrix individually:

3-D collection of primitive tasks

5

9
 Parallel Computing (Intro-05): Rajeev Wankar

Domain Decompositions

Source: M.J. Quinn

1-D

2-D

3-D

D
a
ta

 S
tr

u
c
tu

re

10
 Parallel Computing (Intro-05): Rajeev Wankar

1.Partitioning Checklist

• At least 10x more primitive tasks than processors in

target computer

• Minimize redundant computations and redundant

data storage (If not, design does not work well when

problem size increases)

• Primitive tasks roughly the same size (If not, load

balancing problem)

• Number of tasks an increasing function of problem

size (If not, not scale well)

6

11
 Parallel Computing (Intro-05): Rajeev Wankar

2.Communication

• Determine values passed among tasks

• Local communication

– Task needs values from a small number of other

tasks

– Create channels illustrating data flow

• Global communication

– Significant number of tasks contribute data to

perform a computation

– Don’t create channels for them early in design

12
 Parallel Computing (Intro-05): Rajeev Wankar

2.Communication Checklist

 Communications are overhead in parallel algorithms,

minimizing them is an important goal

• Communication operations balanced among tasks

• Each task communicates with only small group of

neighbors

• Tasks can perform communications concurrently

• Task can perform computations concurrently

7

13
 Parallel Computing (Intro-05): Rajeev Wankar

3.Agglomeration

• Grouping tasks into larger tasks

• Goals

– Improve performance

– Maintain scalability of program

– Simplify programming

• In MPI programming, goal often is to create one

agglomerated task per processor

14
 Parallel Computing (Intro-05): Rajeev Wankar

Agglomeration Can Improve Performance

• Eliminate communication between primitive tasks

agglomerated into consolidated task (specially when

the tasks cannot perform their operations in parallel)

• Combine groups of sending and receiving tasks (for

reducing message latency)

Source: M.J. Quinn

8

16
 Parallel Computing (Intro-05): Rajeev Wankar

4.Mapping

• Process of assigning tasks to processors

• Centralized multiprocessor: mapping done by

operating system

• Distributed memory system: mapping done by user

• Goals of mapping

– Maximize processor utilization

– Minimize inter-processor communication

17
 Parallel Computing (Intro-05): Rajeev Wankar

Mapping Example

Source: M.J. Quinn

A

B C

D E

G H

F

A

B

C

D

E

G

H

F

9

18
 Parallel Computing (Intro-05): Rajeev Wankar

Optimal Mapping

• Finding optimal mapping is NP-hard

• Must rely on heuristics

19
 Parallel Computing (Intro-05): Rajeev Wankar

Definition

• In local communication, each task communicates with a small set
of other tasks (its ``neighbors''); in contrast, global communication
requires each task to communicate with many tasks.

• In structured communication, a task and its neighbors form a
regular structure, such as a tree or grid; in contrast, unstructured
communication networks may be arbitrary graphs.

• In static communication, the identity of communication partners
does not change over time; in contrast, the identity of
communication partners in dynamic communication structures
may be determined by data computed at runtime and may be
highly variable.

• In synchronous communication, producers and consumers
execute in a coordinated fashion, with producer/consumer pairs
cooperating in data transfer operations; in contrast, asynchronous
communication may require that a consumer obtain data without
the cooperation of the producer.

10

20
 Parallel Computing (Intro-05): Rajeev Wankar

Mapping Decision Tree

• Partition is done using domain decomposition, tasks are small,

communication is regular, create p agglomerated tasks on p

processors

• Static number of tasks

– Structured communication

• Constant computation time per task

– Agglomerate tasks to minimize comm

– Create one task per processor

• Variable computation time per task

– Cyclically map tasks to processors

– Unstructured communication

– First run a static load balancing algorithm before

determining the strategy

• Dynamic number of tasks

21
 Parallel Computing (Intro-05): Rajeev Wankar

Mapping Strategy

• Static number of tasks

• Dynamic number of tasks

– Frequent communications between tasks

• Use a dynamic load balancing algorithm

– Many short-lived tasks

• Use a run-time task-scheduling algorithm

11

22
 Parallel Computing (Intro-05): Rajeev Wankar

Mapping Checklist

• Considered designs based on one task per processor

and multiple tasks per processor

• Evaluated static and dynamic task allocation

• If dynamic task allocation chosen, task allocator is

not a bottleneck to performance

• If static task allocation chosen, ratio of tasks to

processors is at least 10:1

23
 Parallel Computing (Intro-05): Rajeev Wankar

Decision tree to choose a mapping strategy

12

24
 Parallel Computing (Intro-05): Rajeev Wankar

Static number of

tasks

Structured

communication

pattern

Unstructured

communication

pattern

Roughly constant

computation time

per task

Join tasks to

minimize

communication.

Create one task

per processor

Cyclically map

tasks to

processors for

computational

load balancing

Computation

time per task

varies

Use static

load

balancing

techniques

Dynamic number

of tasks

Many short-lived

tasks. No inter task

communication

Frequent

communications

between tasks

Use dynamic

load

balancing

techniques

Use run time

task

scheduling

algorithms

25
 Parallel Computing (Intro-05): Rajeev Wankar

Reduction

• Given associative operator 

• a0  a1  a2  …  an-1

• Examples

– Add

– Multiply

– And, Or

– Maximum, Minimum

13

26
 Parallel Computing (Intro-05): Rajeev Wankar

Parallel Reduction Evolution

Source: M.J. Quinn

Observations:

1. If x time required

for a task to

communicate

another task

2. y time is required

for addition then

3. Total time will be

(n-1)(x+y)

27
 Parallel Computing (Intro-05): Rajeev Wankar

Parallel Reduction Evolution

Source: M.J. Quinn

Observations:Total time will be now (n/2-1)(x+y)

14

28
 Parallel Computing (Intro-05): Rajeev Wankar

Parallel Reduction Evolution

Source: M.J. Quinn

29
 Parallel Computing (Intro-05): Rajeev Wankar

Binomial Trees

Subgraph of hypercube

Observations:

 Continuing this way we have n/2 semi-root tasks

Total time will be log n

15

30
 Parallel Computing (Intro-05): Rajeev Wankar

Finding Global Sum

4 2 0 7

-3 5 -6 -3

8 1 2 3

-4 4 6 -1

31
 Parallel Computing (Intro-05): Rajeev Wankar

Finding Global Sum

1 7 -6 4

4 5 8 2

16

32
 Parallel Computing (Intro-05): Rajeev Wankar

Finding Global Sum

8 -2

9 10

33
 Parallel Computing (Intro-05): Rajeev Wankar

Finding Global Sum

17 8

17

34
 Parallel Computing (Intro-05): Rajeev Wankar

Finding Global Sum

25

Binomial Tree

35
 Parallel Computing (Intro-05): Rajeev Wankar

Agglomeration

Observations:

1. Number of tasks

are static

2. Computations

per task are trivial

3. Communication

pattern is regular

18

36
 Parallel Computing (Intro-05): Rajeev Wankar

Agglomeration

sum

sum sum

sum

Observations:

1. If x time required

for a task to

communicate

another task

2. y time is required

for binary

operation then

3. Total time will be

(n-1)(x+y)

37
 Parallel Computing (Intro-05): Rajeev Wankar

Agglomeration

sum

sum sum

sum

Observations:

1. If we have p

processors

2. Time require to

compute sub total

is

3. Reduction

require x+y time

4. With

communications

overall time

  y)1(n/p

 p log

19

38
 Parallel Computing (Intro-05): Rajeev Wankar

Agglomeration

sum

sum sum

sum

Total time:

 + (x+y)   y)1(n/p  p log

