

Cluster of Computers – Features
A cluster is a type of parallel or distributed processing system, which consists of a collection of interconnected *stand-alone computers* cooperatively working together as a single, integrated computing resources. "*stand-alone*" (whole) computer that can be used on its own (full hardware and OS)
Collection of nodes physically connected over commodity/ proprietary network
Cluster computer is a collection of complete independent workstations or Symmetric Multi Processors
Network is a decisive factors for scalability issues (especially for fine grain applications)
High volumes driving high performance
Network using commodity components and proprietary architecture is

Parallel Computing (Intro-04): Rajeev Wankar

becoming the trend

Source: Raj Buyya Slides

28

Source: Raj Buyya Slides

Source: Raj Buyya Slides 31

Source: Raj Buyya Slides 37

Some Cluster Systems: Comparison				
Project	Platform	Communications	OS	Other
Beowulf	PCs	Multiple Ethernet with TCP/IP	Linux and Grendel	MPI/PVM. Sockets and HPF
Berkeley Now	Solaris-based PCs and workstations	Myrinet and Active Messages	Solaris + GLUnix + xFS	AM, PVM, MPI, HPF, Split-C
HPVM	PCs	Myrinet with Fast Messages	NT or Linux connection and global resource manager + LSF	Java-fronted, FM, Sockets, Global Arrays, SHEMEM and MPI
Solaris MC	Solaris-based PCs and workstations	Solaris-supported	Solaris + Globalization layer	C++ and CORBA

Major References

Kai Hwang, Zhiwei Xu, Scalable Parallel Computing (Technology Architecture Programming) McGraw Hill Newyork (1997).

Culler David E, Jaswinder Pal Singh with Anoop Gupta, Parallel Computer Architecture, A Hardware/Software Approach, Morgan Kaufmann Publishers, Inc, (1999), Reprinted in 2004.

Barry Wilkinson And Michael Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, Prentice Hall, Upper Saddle River, NJ, 1999.

RajKumar Buyya, High Performance Cluster Computing, Programming and Applications, Prentice Hall, 1999.