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Definition: The cost of a PRAM computation is the 

product of the parallel time complexity and the 

number of processors used.  

Various PRAM models differ in how they handle the 

read or write conflicts; 
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EREW (Exclusive Read Exclusive Write): Read and 

write conflicts are not allowed 

CREW (Concurrent Read Exclusive Write): 

Concurrent read allowed (i.e. multiple processors are 

allowed to read from the same memory location), but 

concurrent write is not allowed (Default PRAM) 

CRCW: Concurrent read and concurrent write is   

allowed (W-RAM). There are different policies to handle 

the concurrent write operation. 
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COMMON: All processors writing to the same memory 

location must write same value. 

ARBITRARY: If multiple processors concurrently write 

to the same global address, one of the competing 

processors is arbitrarily chosen and its value is written 

into the register. 

PRIORITY: If multiple processors concurrently write to 

the same global address, the processor with the lowest 

index succeeds its value into the memory location. 
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Relative strength of the models 

Lemma: (Cole [88]) A p-processor EREW PRAM can sort a 

p-element array stored in global memory in (log n) time. 

Theorem: A p-processors PRIORITY PRAM can be 

simulated by a p-processor EREW PRAM with the time 

complexity increased by a factor of (log n). 
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P1    P2    P3    P4   P5
 6      2      9       3     7

M3

6

M7

9 1 0 1 0 0

(3,1)(3,2)(7,3)(3,4)(7,5)

(3,1)(3,2)(3,4)(7,3)(7,5)

 6      2      9     3      7

P1    P2    P3    P4   P5

Sorting

P1    P2    P3    P4   P5
 6      2      9       3     7

M3

6

M7

9

A B C

6 
       Parallel Computing (Intro-02): Rajeev Wankar 

Two statements are used in the algorithm description 

1. spawn (< processor names>) (log p) time needed 

2. for all <processor list> do <{statement name} endfor 

Binary tree is one of the most important data structure 

which can be exploited for the parallel algorithm design. 

top down 

  1. Broadcast 

  2. Divide and Conquer 



4 

7 
       Parallel Computing (Intro-02): Rajeev Wankar 

bottom up 

  fan-in or reduction 

Balanced Binary tree method 

Level 0 

 

 

Level 1 
… 

… 

… 

Level m-1 
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Balanced Binary tree method structure 

for levels m-1, m-2,…, 0 do 

 for each vertex v at internal node in parallel do  

 value[v] = value[LeftChild[v]] op value[RightChild[v]] 

output = value[root];   
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Maximum of n = 2m numbers stored in an array A of 

dimension (2n-1) from A(n), A(n+1),...,A(2n-1). At the end 

A(1) stores the result. 

for k = m-1 step -1 to 0 do 

    for all j,                      , in parallel do  

                      A(j) = max{A(2j), A(2j+1)} 

12 12  kjk
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 4  3  5 1

 

7  9  4 0

       A1     A2     A3     A4   A5     A6    A7    A8     A9    A10   A11   A12   A13   A14   A15

 4  3  5 1

 

7  9  4 0

         A1     A2     A3     A4   A5     A6    A7    A8     A9    A10   A11   A12   A13   A14   A15 

4 5 9 45 9

 4  3  5 1

 

7  9  4 0 9

        A1     A2     A3     A4   A5     A6    A7    A8     A9    A10   A11   A12   A13   A14   A15 

4 5 9 45 9

       No of processors used, Parallel time required  

  5 1 7   9 4 0   4 3 

      A1     A2     A3       A4       A5      A6        A7      A8     A9    A10    A11    A12   A13     A14  A15 

4 5 9 4 

Max of 
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SUM (EREW PRAM) 

Global n, A[0,...,(n-1)],j 

begin 

 spawn (P0,P1,....,P              ) 

 for all Pi where                          do 

  for j = 0 to                do 

   if (i mod 2j )= 0 and (2i + 2j )< n then 

           A[2i] = A[2i] + A[2i + 2j ] 

   endif 

  endfor 

 endfor 

end 

  1n/2 

 1logn 

  1n/2i0 
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  4 

  A0    A1    A2    A3    A4    A5    A6     A7 

  3   5 1 7   9   4 0 

13 20 

33 

7 6 16   4 



7 

14 

Applications of Prefix Computation 

 Knapsack Problem 

 Job Sequencing with deadline 

 Compiler Design 

 Computational Biology  

 Evaluation of Polynomials 

 Solving System of Linear Equations 

 Polynomial Interpolation  
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PREFIX.SUMS (CREW PRAM) 

Global n, A(0), A(1),...,A(n-1), j 

begin 

    spawn(P1, P2, ...., Pn-1) 

    for all Pi where                  do 

   for j = 0 to               do 

   if (i -2j ) >= 0 then 

    A[i] = A[i] + A[i -2j] 

   endif 

  endfor 

 endfor 

end 

1ni0 

  1logn 
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4 3 8 2 9 1 0 5 6 3 

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] 

4 7 15 17 22 20 12 15 12 14 

4 7 11 10 11 10 1 5 11 9 

4 7 15 17 26 27 27 32 34 34 

4 7 15 17 26 27 27 32 38 41 

j = 0 

j = 1 

j =   1logn 

Seq. Steps 
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Exercise: n = 2m numbers stored in an array A of dimension 

(2n-1) from A(n), A(n+1),...,A(2n-1). Write an algorithm for 

obtaining the prefix sum of these numbers, at the end A(i), 

1 i n stores the result. 

Doubling techniques 

Normally  applied to an array or to a list of elements. The 

computation proceeds by a recursive application of the 

computation in hand to all the elements.  



9 

18 

18 

 

 

• Given a linked list, stored in an array, 

compute the distance of each element from 

the end (either end) of the list. 

• Called Pointer Jumping  when using pointers. 

• Don’t destroy original list! 

 

Linked List Ranking 
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Value in an array next represents linked list 

Value in an array position contain original 

distance of each element from end of the list. 

The  distance doubles in successive steps. Thus 

after k iterations computation to all elements at 

distance 2k is performed. 
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Global: n, position[0..(n-1)], next[0..(n-1)], j 

LIST.RANKING(CREW PRAM) 

begin 

  spawn(P0, P1, ...., Pn-1) 

    for all Pi where                   do 

  if next[i] = i then position[i] := 0 

  else position[i] := 1 

  endif 

   for j = 1 to                 do 

     position[i] :=  position[i] + position[next[i]] 

     next[i] = next[next[i]]  

  endfor 

     endfor 

end 

1ni0 

  1logn 
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Step 1: 

1 1 1 1 1 1 
0 
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Step 2: 

2 

2 

2 

2 

2 

1 
0 
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Step 3: 

4 

4 

4 

3 

2 
1 

0 
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Parallel time complexity,  Processors  

Step 4: 

6 
5 

4 

3 

2 
1 

0 
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Work Analysis 

• Number of Steps:  Tp = O(Log N) 

• Number of Processors:  N 

• Work = O(N log N) 

• Sequential = O(N) 

• Optimal?? 
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Applications of List Ranking 

• Expression Tree Evaluation 

• Parentheses Matching 

• Tree Traversals 

• Ear–Decomposition of Graphs 

• Euler tour of trees 

• - - -  many others 
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Merging two sorted lists 

Best known sequential algorithm needs O(n) time. Every 

processor finds the position of its own element on the other 

list using binary search, making an algorithm that takes 

O(log n) parallel time. 

Assumption: Two lists and their unions have disjoint 

values. 
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Global A[1..n] 

MERGE.LISTS(CREW PRAM): 

Local x, low, high, index 

begin 

   spawn(P1, P2, ...., Pn) 

   for all Pi where              do 

      if (i <= n/2) then 

         low := (n/2)+1 

         high := n 

      else 

         low := 1 

         high := n/2 

      endif 

ni1 
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{Each processor performs binary search} 

      x := A[i] 

      repeat 

          index:=  

          if x < A[index] then 

             high := index-1 

         else 

            low := index + 1 

         endif 

       until (low > high) 

       {put values in correct position on merged list}   

       A[high+i-n/2] := x 

    endfor 

end 

 2/)( highlow 



15 

31 
       Parallel Computing (Intro-02): Rajeev Wankar 

A[1]

1

A[2]

5

A[3]

7

A[4]

9

A[5]

13

A[6]

17

A[7]

19

A[8]

23

2 4 8 11 12 21 22 24

1 2 4 5  7 8 9 11 12 13 17 19 21 22 23

A[16]

24

A[9] A[10] A[11] A[12] A[13] A[14] A[15] A[16]

A[1]

Parallel time = ?,                                No. of processors = ? 
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Do we need so many processors 

(Cost) Optimal parallel algorithm: One in which the 

product of number of processor p used and parallel time t is 

linear in problem size S, i.e. pt = O(S) 
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Reducing the number of processors 

Suppose we have designed an algorithm working in parallel 

time t with p processors, here we assume that p is the 

maximum number of operations executed in the same 

parallel step. 

Maximum finding algorithm takes O(log n) time with                                                                   

the               processors, in fact n/2 processors are required 

only at the beginning of the procedure. Most of the 

processors are sitting idle.   

n/2p 
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suppose we have p<n/2 processors. Partition n elements in 

p groups. p-1 such group will be having         elements and 

remaining group contains 
 n/p

(n-(p-1)          <=         ) elements.  n/p



17 

35 
       Parallel Computing (Intro-02): Rajeev Wankar 

suppose we have p<n/2 processors. Partition n elements in 

p groups. p-1 such group will be having         elements and 

remaining group contains 
 n/p

(n-(p-1)          <=         ) elements.  n/p  n/p

Assign a processor to each group which finds 

maximum in           time each, in parallel, later log p 

time using balanced binary tree method. 
  1n/p 
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  1n/p Thus overall time is             + log p with p < n/2 processors.   

What if p = n / logn 

Brent’s theorem: Let A be a given parallel algorithm with 

computation time t, if parallel algorithm performs m 

computational operations then p processors can execute 

algorithm A in time 0(m/p + t). 
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Definition: The set (logn)0(n) is called the set of polyloga- 

rithmic function. 

Theorem(Parallel computation thesis): The class of 

problems solvable in time T(n)0(n) by a PRAM is equal to the 

class of problems solvable in work space T(n)0(n) by a RAM, 

if T(n) >= log n. 


