
1

1
 Parallel Computing (Intro-02): Rajeev Wankar

Definition: The cost of a PRAM computation is the

product of the parallel time complexity and the

number of processors used.

Various PRAM models differ in how they handle the

read or write conflicts;

2
 Parallel Computing (Intro-02): Rajeev Wankar

EREW (Exclusive Read Exclusive Write): Read and

write conflicts are not allowed

CREW (Concurrent Read Exclusive Write):

Concurrent read allowed (i.e. multiple processors are

allowed to read from the same memory location), but

concurrent write is not allowed (Default PRAM)

CRCW: Concurrent read and concurrent write is

allowed (W-RAM). There are different policies to handle

the concurrent write operation.

2

3
 Parallel Computing (Intro-02): Rajeev Wankar

COMMON: All processors writing to the same memory

location must write same value.

ARBITRARY: If multiple processors concurrently write

to the same global address, one of the competing

processors is arbitrarily chosen and its value is written

into the register.

PRIORITY: If multiple processors concurrently write to

the same global address, the processor with the lowest

index succeeds its value into the memory location.

4
 Parallel Computing (Intro-02): Rajeev Wankar

Relative strength of the models

Lemma: (Cole [88]) A p-processor EREW PRAM can sort a

p-element array stored in global memory in (log n) time.

Theorem: A p-processors PRIORITY PRAM can be

simulated by a p-processor EREW PRAM with the time

complexity increased by a factor of (log n).

3

5
 Parallel Computing (Intro-02): Rajeev Wankar

P1 P2 P3 P4 P5
 6 2 9 3 7

M3

6

M7

9 1 0 1 0 0

(3,1)(3,2)(7,3)(3,4)(7,5)

(3,1)(3,2)(3,4)(7,3)(7,5)

 6 2 9 3 7

P1 P2 P3 P4 P5

Sorting

P1 P2 P3 P4 P5
 6 2 9 3 7

M3

6

M7

9

A B C

6
 Parallel Computing (Intro-02): Rajeev Wankar

Two statements are used in the algorithm description

1. spawn (< processor names>) (log p) time needed

2. for all <processor list> do <{statement name} endfor

Binary tree is one of the most important data structure

which can be exploited for the parallel algorithm design.

top down

 1. Broadcast

 2. Divide and Conquer

4

7
 Parallel Computing (Intro-02): Rajeev Wankar

bottom up

 fan-in or reduction

Balanced Binary tree method

Level 0

Level 1
…

…

…

Level m-1

8
 Parallel Computing (Intro-02): Rajeev Wankar

Balanced Binary tree method structure

for levels m-1, m-2,…, 0 do

 for each vertex v at internal node in parallel do

 value[v] = value[LeftChild[v]] op value[RightChild[v]]

output = value[root];

5

9
 Parallel Computing (Intro-02): Rajeev Wankar

Maximum of n = 2m numbers stored in an array A of

dimension (2n-1) from A(n), A(n+1),...,A(2n-1). At the end

A(1) stores the result.

for k = m-1 step -1 to 0 do

 for all j, , in parallel do

 A(j) = max{A(2j), A(2j+1)}

12 12  kjk

10
 Parallel Computing (Intro-02): Rajeev Wankar

 4 3 5 1

7 9 4 0

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

 4 3 5 1

7 9 4 0

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

4 5 9 45 9

 4 3 5 1

7 9 4 0 9

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

4 5 9 45 9

 No of processors used, Parallel time required

 5 1 7 9 4 0 4 3

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

4 5 9 4

Max of

6

11
 Parallel Computing (Intro-02): Rajeev Wankar

SUM (EREW PRAM)

Global n, A[0,...,(n-1)],j

begin

 spawn (P0,P1,....,P)

 for all Pi where do

 for j = 0 to do

 if (i mod 2j)= 0 and (2i + 2j)< n then

 A[2i] = A[2i] + A[2i + 2j]

 endif

 endfor

 endfor

end

  1n/2 

 1logn 

  1n/2i0 

12
 Parallel Computing (Intro-02): Rajeev Wankar

 4

 A0 A1 A2 A3 A4 A5 A6 A7

 3 5 1 7 9 4 0

13 20

33

7 6 16 4

7

14

Applications of Prefix Computation

 Knapsack Problem

 Job Sequencing with deadline

 Compiler Design

 Computational Biology

 Evaluation of Polynomials

 Solving System of Linear Equations

 Polynomial Interpolation

 Parallel Computing (Intro-02): Rajeev Wankar

15
 Parallel Computing (Intro-02): Rajeev Wankar

PREFIX.SUMS (CREW PRAM)

Global n, A(0), A(1),...,A(n-1), j

begin

 spawn(P1, P2,, Pn-1)

 for all Pi where do

 for j = 0 to do

 if (i -2j) >= 0 then

 A[i] = A[i] + A[i -2j]

 endif

 endfor

 endfor

end

1ni0 

  1logn 

8

16
 Parallel Computing (Intro-02): Rajeev Wankar

4 3 8 2 9 1 0 5 6 3

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

4 7 15 17 22 20 12 15 12 14

4 7 11 10 11 10 1 5 11 9

4 7 15 17 26 27 27 32 34 34

4 7 15 17 26 27 27 32 38 41

j = 0

j = 1

j =   1logn 

Seq. Steps

17
 Parallel Computing (Intro-02): Rajeev Wankar

Exercise: n = 2m numbers stored in an array A of dimension

(2n-1) from A(n), A(n+1),...,A(2n-1). Write an algorithm for

obtaining the prefix sum of these numbers, at the end A(i),

1 i n stores the result.

Doubling techniques

Normally applied to an array or to a list of elements. The

computation proceeds by a recursive application of the

computation in hand to all the elements.

9

18

18

• Given a linked list, stored in an array,

compute the distance of each element from

the end (either end) of the list.

• Called Pointer Jumping when using pointers.

• Don’t destroy original list!

Linked List Ranking

19
 Parallel Computing (Intro-02): Rajeev Wankar

Value in an array next represents linked list

Value in an array position contain original

distance of each element from end of the list.

The distance doubles in successive steps. Thus

after k iterations computation to all elements at

distance 2k is performed.

10

20
 Parallel Computing (Intro-02): Rajeev Wankar

Global: n, position[0..(n-1)], next[0..(n-1)], j

LIST.RANKING(CREW PRAM)

begin

 spawn(P0, P1,, Pn-1)

 for all Pi where do

 if next[i] = i then position[i] := 0

 else position[i] := 1

 endif

 for j = 1 to do

 position[i] := position[i] + position[next[i]]

 next[i] = next[next[i]]

 endfor

 endfor

end

1ni0 

  1logn 

21
 Parallel Computing (Intro-02): Rajeev Wankar

Step 1:

1 1 1 1 1 1
0

11

22
 Parallel Computing (Intro-02): Rajeev Wankar

Step 2:

2

2

2

2

2

1
0

23
 Parallel Computing (Intro-02): Rajeev Wankar

Step 3:

4

4

4

3

2
1

0

12

24
 Parallel Computing (Intro-02): Rajeev Wankar

Parallel time complexity, Processors

Step 4:

6
5

4

3

2
1

0

25

Work Analysis

• Number of Steps: Tp = O(Log N)

• Number of Processors: N

• Work = O(N log N)

• Sequential = O(N)

• Optimal??

13

26

Applications of List Ranking

• Expression Tree Evaluation

• Parentheses Matching

• Tree Traversals

• Ear–Decomposition of Graphs

• Euler tour of trees

• - - - many others

27
 Parallel Computing (Intro-02): Rajeev Wankar

Merging two sorted lists

Best known sequential algorithm needs O(n) time. Every

processor finds the position of its own element on the other

list using binary search, making an algorithm that takes

O(log n) parallel time.

Assumption: Two lists and their unions have disjoint

values.

14

28
 Parallel Computing (Intro-02): Rajeev Wankar

Global A[1..n]

MERGE.LISTS(CREW PRAM):

Local x, low, high, index

begin

 spawn(P1, P2,, Pn)

 for all Pi where do

 if (i <= n/2) then

 low := (n/2)+1

 high := n

 else

 low := 1

 high := n/2

 endif

ni1 

29
 Parallel Computing (Intro-02): Rajeev Wankar

{Each processor performs binary search}

 x := A[i]

 repeat

 index:=

 if x < A[index] then

 high := index-1

 else

 low := index + 1

 endif

 until (low > high)

 {put values in correct position on merged list}

 A[high+i-n/2] := x

 endfor

end

 2/)(highlow 

15

31
 Parallel Computing (Intro-02): Rajeev Wankar

A[1]

1

A[2]

5

A[3]

7

A[4]

9

A[5]

13

A[6]

17

A[7]

19

A[8]

23

2 4 8 11 12 21 22 24

1 2 4 5 7 8 9 11 12 13 17 19 21 22 23

A[16]

24

A[9] A[10] A[11] A[12] A[13] A[14] A[15] A[16]

A[1]

Parallel time = ?, No. of processors = ?

32
 Parallel Computing (Intro-02): Rajeev Wankar

Do we need so many processors

(Cost) Optimal parallel algorithm: One in which the

product of number of processor p used and parallel time t is

linear in problem size S, i.e. pt = O(S)

16

33
 Parallel Computing (Intro-02): Rajeev Wankar

Reducing the number of processors

Suppose we have designed an algorithm working in parallel

time t with p processors, here we assume that p is the

maximum number of operations executed in the same

parallel step.

Maximum finding algorithm takes O(log n) time with

the processors, in fact n/2 processors are required

only at the beginning of the procedure. Most of the

processors are sitting idle.

n/2p 

34
 Parallel Computing (Intro-02): Rajeev Wankar

suppose we have p<n/2 processors. Partition n elements in

p groups. p-1 such group will be having elements and

remaining group contains
 n/p

(n-(p-1) <=) elements.  n/p

17

35
 Parallel Computing (Intro-02): Rajeev Wankar

suppose we have p<n/2 processors. Partition n elements in

p groups. p-1 such group will be having elements and

remaining group contains
 n/p

(n-(p-1) <=) elements.  n/p  n/p

Assign a processor to each group which finds

maximum in time each, in parallel, later log p

time using balanced binary tree method.
  1n/p 

36
 Parallel Computing (Intro-02): Rajeev Wankar

  1n/p Thus overall time is + log p with p < n/2 processors.

What if p = n / logn

Brent’s theorem: Let A be a given parallel algorithm with

computation time t, if parallel algorithm performs m

computational operations then p processors can execute

algorithm A in time 0(m/p + t).

18

37
 Parallel Computing (Intro-02): Rajeev Wankar

Definition: The set (logn)0(n) is called the set of polyloga-

rithmic function.

Theorem(Parallel computation thesis): The class of

problems solvable in time T(n)0(n) by a PRAM is equal to the

class of problems solvable in work space T(n)0(n) by a RAM,

if T(n) >= log n.

