
1 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Cloud Programming and Software

Environments

Acknowledgement: Prof. Rajkumar Buyya for providing figures appear in this presentation

2 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Introduction

• Commercial clouds need broad capabilities,

these capabilities offer cost-effective utility

computing with the elasticity to scale up and

down in power. These include:

– Physical or virtual computing platform

– Massive data storage service, distributed

file system

– Massive database storage service

– Massive data processing method and

programming model

3 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Introduction

– Workflow and data query language support

– Programming interface and service

deployment

– Runtime support

– Support services

4 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Infrastructure Cloud Features

• Accounting: Includes economies; clearly an

active area for commercial clouds

• Appliances: Preconfigured virtual machine

(VM) image supporting multifaceted tasks

such as message-passing interface (MPI)

clusters

• Authentication and authorization: Could

need single sign-on to multiple systems

5 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Infrastructure Cloud Features

• Data transport: Transports data between job

components both between and within grids

and clouds; exploits custom storage patterns

as in BitTorrent

• Operating systems: Apple, Android, Linux,

Windows

• Program library: Stores images and other

program material

• Registry: Information resource for system

(system version of metadata management)

6 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Infrastructure Cloud Features

• Security: Security features other than basic

authentication and authorization; includes

higher level concepts such as trust

• Scheduling: Basic staple of Condor,

Platform, Oracle Grid Engine, etc.; clouds

have this implicitly as is especially clear with

Azure Worker Role

• Gang scheduling: Assigns multiple (data-

parallel) tasks in a scalable fashion; note that

this is provided automatically by MapReduce

7 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Infrastructure Cloud Features

• Software as a Service (SaaS): Shared

between clouds and grids, and can be

supported without special attention; Note use

of services and corresponding service

oriented architectures are very successful

and are used in clouds very similarly to

previous distributed systems.

8 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Infrastructure Cloud Features

• Virtualization: Basic feature of clouds

supporting elastic feature highlighted by

Berkeley as characteristic of what defines a

(public) cloud; includes virtual networking as

in ViNe from University of Florida

9 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Platform Features Supported by Clouds

• Blob: Basic storage concept typified by Azure

Blob and Amazon S3

• DPFS: Support of file systems such as

Google (MapReduce), HDFS (Hadoop), and

Cosmos (Dryad) with compute-data affinity

optimized for data processing

• Fault tolerance: A major feature of clouds

10 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Platform Features Supported by Clouds

• MapReduce: Support MapReduce

programming model including Hadoop on

Linux, Dryad on Windows HPCS, and Twister

on Windows and Linux. Include new

associated languages such as Sawzall,

Pregel, Pig Latin, and LINQ

• Monitoring: Can be based on publish-

subscribe

• Notification: Basic function of publish-

subscribe systems

11 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Platform Features Supported by Clouds

• Programming model: Cloud programming

models are built with other platform features

and are related to familiar web and grid

models

• Queues: Queuing system possibly based on

publish-subscribe

• Scalable synchronization: Apache

Zookeeper or Google Chubby. Supports

distributed locks and used by BigTable.

12 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Platform Features Supported by Clouds

• SQL: Relational database

• Table: Support of table data structures

modeled on Apache Hbase or Amazon

SimpleDB/Azure Table. Part of NOSQL

movement

• Web role: Used in Azure to describe

important link to user and can be supported

otherwise with a portal framework. This is the

main purpose of GAE

13 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Platform Features Supported by Clouds

• Worker role: Implicitly used in both Amazon

and grids but was first introduced as a high-

level construct by Azure

14 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Traditional Features Common to Grids and

Clouds

• Workflow

• Data Transport

• Security, Privacy, and Availability

15 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Technologies for Data-Intensive Computing

• Data-intensive computing concerns the

development of applications that are mainly

focused on processing large quantities of data

• Explosion of unstructured data in the form of

blogs, web pages, software logs, and sensor

readings.

• The relational model in its original formulation,

does not seem to be the preferred solution for

supporting data analytics at a large scale

16 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Technologies for Data-Intensive Computing

• Growing of popularity of Big Data

• Growing importance of data analytics in the

business chain

• Presence of data in several forms, not only

structured

• New approaches and technologies for

computing

17 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

High Performance Distributed &

Parallel File Systems and Storages

18 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Lustre File System

• Lustre (Sun Microsystem now Oracle)

• A massively parallel distributed file system

that covers the needs of a small workgroup of

clusters to a large scale computing cluster.

• Lustre is designed to provide access to

petabytes (PBs) of storage, to serve

thousands of clients with an IO throughput of

hundreds of gigabytes per second (GB/s).

19 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Lustre File System

• The system is composed by a metadata

server containing the metadata information

about the file system and a collection of

object storage servers that are in-charge of

providing storage.

• Users access the file system via a POSIX

compliant client, which can be either mounted

as a module in the kernel or through a library.

20 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Lustre File System

21 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Lustre File System

• The Lustre file system is made up of an

underlying set of I/O servers called Object

Storage Servers (OSSs)

• disks called Object Storage Targets (OSTs).

• The file metadata is controlled by a Metadata

Server (MDS) and stored on a Metadata

Target (MDT).

• A single Lustre file system consists of one

MDS and one MDT.

22 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Lustre File System

• The file system implements a robust failover

strategy and recovery mechanism, making

server failures and recoveries transparent to

clients.

23 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

General Parallel File System (GPFS)

• IBM General Parallel File System (GPFS)

• It is a high performance distributed file system

developed providing support for RS/6000

supercomputer and Linux computing clusters.

• GPFS is a multi-platform distributed file

system built with advanced recovery

mechanisms.

24 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

General Parallel File System (GPFS)

• GPFS is built on the concept of shared disks,

where a collection of disks is attached to the

file systems nodes by means of some

switching fabric.

• The file system makes this infrastructure

transparent to users and stripes large files

over the disk array also by replicating portion

of the file in order to ensure high availability.

25 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

General Parallel File System (GPFS)

• By means of this infrastructure, the system is

able to support petabytes of storage, which is

accessed at a high throughput and without

losing consistency of data.

• GPFS also distributes the metadata of the

entire file system and provides transparent

access to it, thus eliminating a single point of

failure.

26 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• Google File System (GFS)

• GFS was built primarily as the fundamental

storage service for Google’s search engine

• Google needed a distributed file system to

redundantly store massive amounts of data

on cheap and unreliable computers.

• In traditional file system design, there should

be a clear interface between applications and

the file system, such as a POSIX interface

27 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System (write)

• GFS typically will hold a large number of

huge files, each 100 MB or larger. Thus,

Google has chosen its file data block size to

be 64 MB

• The I/O pattern in the Google application is

also special. Files are typically written once,

and the write operations are often the

appending data blocks to the end of files.

• Multiple appending operations might be

concurrent.

28 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System (read)

• There will be a lot of large streaming reads

and only a little random access.

• For large streaming reads, highly sustained

throughput is given more important than low

latency.

• The workloads primarily consist of two kinds

of reads: large streaming reads and small

random reads.

29 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• Google made some special decisions

regarding the design of GFS. Reliability is

achieved by using replications (i.e., each

chunk is replicated across more than three

chunk servers).

• A single master coordinates access as well

as keeps the metadata

30 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• There is no data cache in GFS as large

streaming reads and writes represent neither

time nor space locality.

• GFS provides a similar, but not identical,

POSIX file system accessing interface.

• The architecture of the file system is

organized into a single master, containing the

metadata of the entire file system, and a

collection of chunk servers, which provide

storage space.

31 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• From a logical point of view the system is

composed by a collection of software

daemons, which implement either the master

server or the chunk server.

• A file is a collection of chunks whose size can

be configured at file system level.

• Chunks are replicated on multiple nodes in

order to tolerate failures.

32 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• Clients look up the master server and identify

the specific chunk of a file they want to

access.

• Once the chunk is identified, the interaction

happens between the client and the chunk

server.

33 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Architecture diagram of GFS

 Master

Server

Chunk

Servers

34 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• A single-master architecture brings simplicity

to the design of the system but gives rise to

some concern for its scalability and reliability.

• The scalability concern is addressed by a

Client cache, called Client image in the

following way.

• Let us examine in detail how the system

handles a read() request:

35 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Architecture diagram of GFS

36 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

1. The Client sends

first read(/dirB/file1) request; since it knows

nothing about the file distribution, the

request is routed to the Master (1).

37 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

2. The Master inspects the namespace and

finds that file1 is mapped to a list of chunks;

their location is found in a local table (2).

38 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

3. Each server holding a chunk of file1 is

required to transmit this chunk to the Client

(3).

39 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

4. The Client keeps in its cache the addresses

of the nodes that serve file1 (but not the file

itself); this knowledge can be used for

subsequent accesses to file1(4).

40 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Architecture diagram of GFS

41 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Google File System

• From the Client point of view, the distributed

file system appears just like a directory

hierarchy equipped with the usual Unix

navigation (chddir, ls) and access

(read, write) commands.

42 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Hadoop Distributed File System (HDFS)

• HDFS: is a distributed file system inspired by

GFS that organizes files and stores their data

on a distributed computing system.

• HDFS Architecture: HDFS has a

master/slave architecture containing a single

NameNode as the master and a number of

DataNodes as workers (slaves).

43 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• To store a file in this architecture, HDFS splits

the file into fixed-size blocks (e.g., 64 MB)

and stores them on workers (DataNodes).

• The mapping of blocks to DataNodes is

determined by the NameNode.

• The NameNode (master) also manages the

file system’s metadata and namespace.

44 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• In such systems, the namespace is the area

maintaining the metadata (location of input

splits/blocks in all DataNodes)

• Each DataNode, usually one per node in a

cluster, manages the storage attached to the

node.

• Each DataNode is responsible for storing and

retrieving its file blocks

45 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

46 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• HDFS Fault Tolerance: One of the main

aspects of HDFS is its fault tolerance

characteristic.

• Since Hadoop is designed to be deployed on

low-cost hardware by default, a hardware

failure in this system is considered to be

common rather than an exception.

47 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• Therefore, Hadoop considers the following

issues to fulfill reliability requirements of the

file system

– Block replication: The replication factor is set by

the user and is three by default.

– Replica placement: HDFS compromises its

reliability to achieve lower communication costs. In

the HDFS the default replication factor of three,

• HDFS stores one replica in the same node the original

data is stored,

• one replica on a different node but in the same rack, and

• one replica on a different node in a different rack to

provide three copies of the data

48 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• Reading a file: a user sends an open

request to the NameNode to get the location

of file blocks.

49 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• For each file block, the NameNode returns

the address of a set of DataNodes containing

replica information for the requested file.

50 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• The number of addresses depends on the

number of block replicas.

51 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• Upon receiving such information, the user

calls the read function to connect to the

closest DataNode containing the first block of

the file.

52 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• After the first block is streamed from the

respective DataNode to the user, the

established connection is terminated and the

same process is repeated for all blocks of the

requested file until the whole file is streamed

to the user.

53 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• Writing to a file: a user sends a create

request to the NameNode to create a new file

in the file system namespace.

• If the file does not exist, the NameNode

notifies the user and allows him to start

writing data to the file by calling the write

function.

54 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• The first block of the file is written to an

internal queue termed the data queue while a

data streamer monitors its writing into a

DataNode.

• Since each file block needs to be replicated

by a predefined factor, the data streamer first

sends a request to the NameNode to get a list

of suitable DataNodes to store replicas of the

first block.

55 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

56 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• The steamer then stores the block in the first

allocated DataNode. Afterward, the block is

forwarded to the second DataNode by the

first DataNode.

• The process continues until all allocated

DataNodes receive a replica of the first block

from the previous DataNode. Then process is

repeated for other blocks.

57 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

58 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

HDFS

• Heartbeat and Blockreport messages: are

periodic messages sent to the NameNode by

each DataNode in a cluster.

– Receipt of a Heartbeat implies that the DataNode

is functioning properly,

– Blockreport contains a list of all blocks on a

DataNode.

• The NameNode receives such messages

because it is the sole decision maker of all

replicas in the system.

59 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

60 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Differences from GFS

• Only single-writers per file.

– No record append operation.

• Open source

– Provides many interfaces and libraries for

different file systems. Ex. S3, KFS, etc.

Thrift IDE for C++, Python etc.

61 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Amazon Simple Storage Service (S3)

• Amazon S3 provides a simple web services

interface that can be used to store and

retrieve any amount of data, at any time, from

anywhere on the web.

• S3 provides the object-oriented storage

service for users. Users can access their

objects through SOAP/REST with either

browsers or other client programs which

support SOAP/REST.

62 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Amazon Simple Storage Service (S3)

• SQS is responsible for ensuring a reliable

message service between two processes,

even if the receiver processes are not

running.

63 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Amazon Simple Storage Service (S3)

• The fundamental operation unit of S3 is

called an object. Each object is stored in a

bucket and retrieved via a unique, developer-

assigned key.

• Besides unique key attributes, the object has

other attributes such as values, metadata,

and access control information.

64 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Amazon Simple Storage Service (S3)

• From the programmer’s perspective, the

storage provided by S3 can be viewed as a

very coarse-grained key-value pair.

• Through the key-value programming

interface, users can write, read, and delete

objects containing from 1 byte to 5 gigabytes

of data each.

65 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Amazon Simple Storage Service (S3)

• There are two types of web service interface

for the user to access the data stored in

Amazon clouds.

• One is a REST (web 2.0) interface, and the

other is a SOAP interface.

66 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Programming Platforms

67 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Programming Platforms

• Platforms for programming data intensive

applications provide abstractions

• Help us to express the computation over a

large quantity of information, and runtime

systems are able to manage huge volumes of

data efficiently

68 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce

• MapReduce, as introduced, is a software

framework which supports parallel and

distributed computing on large data sets.

• This software framework abstracts the data

flow of running a parallel program on a

distributed computing system by providing

users with two interfaces in the form of two

functions: Map and Reduce (originally from

Functional Programming)

69 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce

• Users can override these two functions to

interact with and manipulate the data flow of

running their programs.

• In this framework, the value part of the data,

(key, value), is the actual data, and the key

part is only used by the MapReduce

controller to control the data flow.

70 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

logical data flow from the Map to the Reduce

Map Function

 {

 }

Reduce Function

 {

 }

Main Function

 {

 Initialize Spec object

 MapReduce (Spec, & Results)

}

71 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce Logical Data Flow

• The input data to both the Map and the

Reduce functions has a particular structure.

This also pertains for the output data.

• The input data to the Map function is in the

form of a (key, value) pair. For example, the

key is the line offset within the input file and

the value is the content of the line.

• The output data from the Map function is

structured as (key, value) pairs called

intermediate (key, value) pairs.

72 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce Logical Data Flow

• In other words, the user-defined Map function

processes each input (key, value) pair and

produces a number of (zero, one, or more)

intermediate (key, value) pairs.

• Here, the goal is to process all input (key,

value) pairs to the Map function in parallel

73 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce logical data flow stages

74 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce

• The Reduce function receives the

intermediate (key, value) pairs in the form of

a group of intermediate values associated

with one intermediate key, (key, [set of

values]).

• In fact, the MapReduce framework forms

these groups by first sorting the intermediate

(key, value) pairs and then grouping values

with the same key.

75 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce

• It should be noted that the data is sorted to

simplify the grouping process.

• The Reduce function processes each (key,

[set of values]) group and produces a set of

(key, value) pairs as output.

76 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce

77 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Formal Notation of MapReduce Data Flow

78 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Formal Notation of MapReduce Data Flow

79 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Formal Notation of MapReduce Data Flow

• The main responsibility of the MapReduce

framework is to efficiently run a user’s

program on a distributed computing system.

• MapReduce framework meticulously handles

all partitioning, mapping, synchronization,

communication, and scheduling details of

such data flows

80 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Formal Notation of MapReduce Data Flow

• Problem 1: Counting the number of

occurrences of words having the same size,

or the same number of letters, in a collection

of documents. What is unique Key? What is

intermediate value?

Solution: unique key: each word,

 intermediate value: size of the word

81 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Formal Notation of MapReduce Data Flow

• Problem 2: Counting the number of

occurrences of anagrams in a collection of

documents. Anagrams are words with the

same set of letters but in a different order

(e.g., the words listen and silent)

• What is unique Key? What is intermediate

value?

 Solution: unique key: alphabetically sorted

sequence of letters for each word,

intermediate value: number of occurrences

82 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

83 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework – Step 1

• Data partitioning The MapReduce library

splits the input data (files), already stored in

GFS, into M pieces that also correspond to

the number of map tasks.

84 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 2

• Computation partitioning is handled by

allowing users to write their programs in the

form of the Map and Reduce functions.

• Therefore, the MapReduce library only

generates copies of a user program (e.g., by

a fork system call) containing the Map and

the Reduce functions, distributes them, and

starts them up on a number of available

computation engines.

85 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 3

• Determining the master and workers one

of the copies of the user program becomes

the master and the rest become workers. The

master picks idle workers, and assigns the

map and reduce tasks to them.

• A map/reduce worker is typically a

computation engine such as a cluster node to

run map/reduce tasks by executing

Map/Reduce functions.

86 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 4

• Reading the input data (data distribution)

Each map worker reads its corresponding

portion of the input data, namely the input

data split, and sends it to its Map function.

• Although a map worker may run more than

one Map function, which means it has been

assigned more than one input data split, each

worker is usually assigned one input split

only.

87 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 5

• Map function Each Map function receives

the input data split as a set of (key, value)

pairs to process and produce the

intermediated (key, value) pairs.

88 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 6

• Combiner function This is an optional local

function within the map worker which applies

to intermediate (key, value) pairs. The user

can invoke the Combiner function inside the

user program.

• The Combiner function runs the same code

written by users for the Reduce function as its

functionality is identical to it. The Combiner

function merges the local data of each map

worker before sending it over the network to

effectively reduce its communication costs.

89 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 7

• Partitioning function the intermediate (key,

value) pairs with identical keys are grouped

together because all values inside each

group should be processed by only one

Reduce function to generate the final result.

90 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 7 Conti…

• However, in real implementations, since there

are M map and R reduce tasks, intermediate

(key, value) pairs with the same key might be

produced by different map tasks, although

they should be grouped and processed

together by one Reduce function only.

91 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 7 Conti…

• Therefore, the intermediate (key, value) pairs

produced by each map worker are partitioned

into R regions, equal to the number of reduce

tasks, by the Partitioning function to

guarantee that all (key, value) pairs with

identical keys are stored in the same region.

92 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 7 Conti…

• As a result, since reduce worker i reads the

data of region i of all map workers, all (key,

value) pairs with the same key will be

gathered by reduce worker i accordingly.

93 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 7 Conti…

• To implement this technique, a Partitioning

function could simply be a hash function (e.g.,

Hash(key) mod R) that forwards the data into

particular regions.

• The locations of the buffered data in these R

partitions are sent to the master for later

forwarding of data to the reduce workers.

94 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 8

• Synchronization MapReduce applies a

simple synchronization policy to coordinate

map workers with reduce workers, in which

the communication between them starts

when all map tasks finish.

95 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 9

• Communication Reduce worker i, already

notified of the location of region i of all map

workers, uses a remote procedure call to

read the data from the respective region of all

map workers.

• Since all reduce workers read the data from

all map workers, all-to-all communication

among all map and reduce workers, which

incurs network congestion, occurs in the

network.

96 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 9 Conti…

• This issue is one of the major bottlenecks in

increasing the performance of such systems.

• A data transfer module was proposed to

schedule data transfers independently.

Steps 10 and 11 correspond to the reduce

worker domain:

97 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 10 Conti…

• Sorting and Grouping When the process of

reading the input data is finalized by a reduce

worker, the data is initially buffered in the

local disk of the reduce worker.

• Then the reduce worker groups intermediate

(key, value) pairs by sorting the data based

on their keys, followed by grouping all

occurrences of identical keys.

98 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 10 Conti…

• Note that the buffered data is sorted and

grouped because the number of unique keys

produced by a map worker may be more than

R regions in which more than one key exists

in each region of a map worker

99 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

MapReduce framework– Step 11 Conti…

• Reduce function The reduce worker iterates

over the grouped (key, value) pairs, and for

each unique key, it sends the key and

corresponding values to the Reduce function.

• This function then processes its input data

and stores the output results in

predetermined files in the user’s program.

100 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

101 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Where does MapReduce Stands

• Map/Reduce Provides Coarse-Grained Parallelism

– Computation done by independent processes

– File-based communication

• Observations

– Relatively “natural” programming model

– Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAM Threads

Map/Reduce

MPI

102 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Example: Sparse Matrices with Map/Reduce

– Task: Compute product C = A·B

– Assume most matrix entries are 0

• Motivation

– Core problem in scientific computing

– Challenging for parallel execution

– Demonstrate expressiveness of Map/Reduce

X =

103 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Computing Sparse Matrix Product

Represent matrix as list of nonzero entries

row, col, value, matrixID

Strategy

Phase 1: Compute all products ai,k · bk,j

Phase 2: Sum products for each entry i,j

Each phase involves a Map/Reduce

A B 1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

104 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Phase 1 Map of Matrix Multiply

– Group values ai,k and bk,j according to key k

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key
=
row

1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = col

105 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Phase 1 “Reduce” of Matrix Multiply

– Generate all products ai,k · bk,j

1 1
-10

C

3 1
-50

C

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

X

X

X

106 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Phase 2 Map of Matrix Multiply

– Group products ai,k · bk,j with matching values of i and j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

C

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = row,col

107 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

Phase 2 Reduce of Matrix Multiply

– Sum products to get final entries

1 1
-10

C

2 1
-60

C

2 2
-250

C

3 1
-170

C

1 2
-80

C

3 2
-460

C

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

C

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

108 of 104 GCC: Cloud Pgm & Software Environments, Rajeev Wankar

