
1 CC-REST-I: Rajeev Wankar

REST

Section-A

Acknowledgement: Java Brains

2 CC-REST-I: Rajeev Wankar

Two Parts

• Section A REST API concepts

• Section B RESTful Web services

implementation using JAX-RS

3 CC-REST-I: Rajeev Wankar

Web Services

• are Services that are exposed on Internet for

the Programmatic accesses.

• They are online API’s that you can call from

your code

Web Services

4 CC-REST-I: Rajeev Wankar

Web Services

Web Services

Web Services

Web Services

Client

5 CC-REST-I: Rajeev Wankar

Web Services

Apps

Games

Posting to wall

of FB

6 CC-REST-I: Rajeev Wankar

Web Services

Publishes their API’s so other can call them from the code

7 CC-REST-I: Rajeev Wankar

Web Services

http://twitter.com

html pages

with css and

styling

http://api.twitter.com

JSON/XML/Text

8 CC-REST-I: Rajeev Wankar

Web Services

http://twitter.com

html pages

with CSS and

styling

http://api.twitter.com

JSON/XML/Text

Developers

can parse

the data

and use

9 CC-REST-I: Rajeev Wankar

Web Services

REST Web Services: light weight

SOAP Web Services: heavy

10 CC-REST-I: Rajeev Wankar

Characteristics

• Exchange of data over web

Client

Server

http request

http response

In the form of

pages

11 CC-REST-I: Rajeev Wankar

Characteristics

• Exchange of data over web

Client

Web Service

http request

http response

Could be in

the form of

data

12 CC-REST-I: Rajeev Wankar

Protocol

• Exchange of data over web

Client

Server

Message Format

13 CC-REST-I: Rajeev Wankar

Protocol

Client

SOAP Web

Service

SOAP Protocol

• This exchange is standardized

14 CC-REST-I: Rajeev Wankar

Protocol

Client

REST Web

Service

?

XML

JSON

TEXT

:

:

• No protocol

15 CC-REST-I: Rajeev Wankar

HTTP Exchange

Client

Server

HTTP request

Several

method? Which

Methods?

• No rule as such

16 CC-REST-I: Rajeev Wankar

Service Definition

• In SOAP WSDL

• In REST NO

• Best REST web services wouldn't need any

documentation

• SOAP uses standard specifications (rules)

17 CC-REST-I: Rajeev Wankar

REST

Roy Fielding

One of the author of HTTP Specification

18 CC-REST-I: Rajeev Wankar

REST

19 CC-REST-I: Rajeev Wankar

REpresentational State Transfer

Architectural Style, guideline

20 CC-REST-I: Rajeev Wankar

REST + Web Services = RESTful Web Services

21 CC-REST-I: Rajeev Wankar

SOAP vs REST

22 CC-REST-I: Rajeev Wankar

XML Vs JSON

https://trends.google.com/trends/explore?date=2004-01-01%202017-08-

16&q=SOAP%20API,REST%20API

23 CC-REST-I: Rajeev Wankar

REST architecture constraints

1. Uniform Interface – Resources are

manipulated via CRUD (create, read,

update, delete) operations. CRUD

operations are managed via POST, GET,

PUT, and DELETE request methods.

2. Stateless – In REST the state is contained

within the request itself, or as part of the

URI, query-string parameters, body or in the

headers. After processing the request, the

state may be communicated back via the

headers, status or response body.

24 CC-REST-I: Rajeev Wankar

REST architecture constraints

3. Cacheable – Responses from the web

service to its clients are explicitly labeled as

cacheable or non-cacheable. This way, the

service, the consumer, or one of the

intermediary middleware components can

cache the response for reuse in later

requests.

25 CC-REST-I: Rajeev Wankar

REST architecture constraints

4. Client Server –The client/server

requirement ensures that a distributed

environment exists. It requires the client that

sends requests and a server component that

receives the requests and return a response

to the client. Error responses may be

transmitted as well, which requires the client

to be responsible for taking any corrective

action.

26 CC-REST-I: Rajeev Wankar

REST architecture constraints

5. Layered System – A client should not be

able to tell whether it is connected directly to

the end server, or to an intermediary along

the way. Intermediary servers may add

security policies, or improve scalability.

6. Code On Demand – This is an optional

constraint. It allows a client to have logic

locally via the ability to download and

execute code from a remote server.

27 CC-REST-I: Rajeev Wankar

Not RESTful Not fully RESTful

Completely RESTful

Goal: Make easy for the consumer

28 CC-REST-I: Rajeev Wankar

• primarily designed to work well with

HTTP/1.1

• The resources and methods are known

as nouns and verbs of REST APIs

29 CC-REST-I: Rajeev Wankar

HTTP

REST is highly inspired by HTTP

specifications

30 CC-REST-I: Rajeev Wankar

Hyper Text Transfer Protocol

Way to exchange information

31 CC-REST-I: Rajeev Wankar

HTTP

• What you exchange

Client

Server

Hypertext

32 CC-REST-I: Rajeev Wankar

• Structured form of text

• Property that it contains: logical link to other

text called “hyperlinks”

• We write hypertext using HTML

• Let us see how REST is inspired by HTTP

Hypertext

33 CC-REST-I: Rajeev Wankar

• Resource Locations

• Since REST API responses are not to be

read by the human it contains only data

• Ex. Weather application returns only:

 {

 Weather

 Temperature

 Wind speed

}

Concepts

34 CC-REST-I: Rajeev Wankar

 Earlier we have Action based address

 weatherapp.com/weatherLookpup.do?zipcode=500050

 http://safar.tropmet.res.in/weather-forecast-

current.php?for=&city_id=3

 Resource based (not asking to do anything)

 weatherapp.com/zipcode/500050

 weatherapp.com/countries/India

Addresses

35 CC-REST-I: Rajeev Wankar

HTTP methods

36 CC-REST-I: Rajeev Wankar

HTTP methods

weatherapp.com/zipcode/500050

Client

GET

GET
POST
PUT

DELETE

Are used based on the action they want to perform

37 CC-REST-I: Rajeev Wankar

• In addition to the response, user gets the

additional information from the server in the

form of response

• HTTP status code at the first line in the

response

Metadata

38 CC-REST-I: Rajeev Wankar

Metadata

39 CC-REST-I: Rajeev Wankar

Success 200

Server error 500

Not found 404

Why status code?

Since the client is NOT a user it is a code

HTTP status

40 CC-REST-I: Rajeev Wankar

• Header information Content Type field

shows the type of the value returned

text/xml

Application/json

• Same API can return multiple content types

(xml/json/text…) based on the choice of the

client

• This powerful feature is known as Content
Negotiation

Content type

41 CC-REST-I: Rajeev Wankar

Messenger Social media
Application

42 CC-REST-I: Rajeev Wankar

Design REST API

 Messenger Social media Application

• Post messages

• Comment on messages

• Like and share messages

• User profile

43 CC-REST-I: Rajeev Wankar

ER Diagram

User

Share

Like

Comment

Message

Tables and their interrelationship

44 CC-REST-I: Rajeev Wankar

For Web Application

• In case it is a web application you need a

page to view a message with a query:

 Get a message with ID 6

• You can use any framework to get this

information using valid URI

• If user can remember URL to the home page

a link can retrieve the information (user

needn't have to remember it)

45 CC-REST-I: Rajeev Wankar

For REST API

• In case it is a REST application, consumer

(developer) need to aware of URI:

• Need to have common URI convention for

different entities!

• So what is the best practice? (nothing

wrong/right)

46 CC-REST-I: Rajeev Wankar

Static Pages

• In early days we used static page to access

the contents

• Every page has a unique URI

47 CC-REST-I: Rajeev Wankar

Static Pages

• That’s exactly the concept used in REST

• Every entity has unique URL that is standard

• Assume that we have faculty website of SCIS

• Every faculty has their own profile

48 CC-REST-I: Rajeev Wankar

Static Pages

aruncs.html

apcs.html

wankarcs.html

49 CC-REST-I: Rajeev Wankar

Static Page Profiles

• Best way to organize them is to have profile

directory and store all the static html pages

• URI will be:

 /profiles/wankarcs.html

RESTful URI is /profiles/wankarcs

More generic /profiles/{profileName}

• Create unique URI for resources

50 CC-REST-I: Rajeev Wankar

Resource based URI

• To our earlier message example URI will be

 /messages/{messageID}

 /messages/6

 /messages/12

– URI contains nouns not verbs

– Resource names are all plural

51 CC-REST-I: Rajeev Wankar

Resource based URI

• There are no verbs, or language/framework

specific syntax in URI

• So if you change technology: fine it works in

the same way.

• In case of the earlier example nouns are

(resources)

– users

– likes

– comments

– shares

52 CC-REST-I: Rajeev Wankar

Resource based URI

• What is the resource URI for the comments

for user ID 6?

 /comments/6

• What is resource relations?

53 CC-REST-I: Rajeev Wankar

Resource Relations

Comment

Message

 /comments/{commentID}

• Design is good but it treats Message and

Comment as two independent resources

• does not show the relation between the

resources

• Can’t have all messages in one folder!

54 CC-REST-I: Rajeev Wankar

Resource Relations

Message 1

Message 2

Comment 1

Comment 2

Comment 3

Comment 4

Comment 5

Comment 6

Comment 7

Comment 8

 messages/1/comments/6
 messages/{messageID}/comments/{commentID}

55 CC-REST-I: Rajeev Wankar

Resource Relations

 /messages/{messageID}/comments/{commentID}

 /messages/{messageID}/likes/{likeID}

 /messages/{messageID}/shares/{shareID}

56 CC-REST-I: Rajeev Wankar

RESTful URI types

• RESTful URI belongs to two type Instances

resource URI and Collection resource URIs

 /messages/{messageID}/comments/{commentID}

 /messages/{messageID}/likes/{likeID}

 /messages/{messageID}/shares/{shareID}

Above are Instance Message URIs

they have unique ID to identify the resource

57 CC-REST-I: Rajeev Wankar

RESTful URI types

• What if I want all messages?

 /messages

 /messages/2/comments

Collection Message URIs

58 CC-REST-I: Rajeev Wankar

RESTful URI types

• What if I want all comments irrespective of

messages?

 /messages/{messageID}/comments

 /messages/2/comments

Above will not work as we need to provide
messageID

/comments (works but not good)

59 CC-REST-I: Rajeev Wankar

Message filtering

• What if I want few messages?

 /messages?offset=10&limit=15

 starting from 10 next 15

 /messages?year=2017

60 CC-REST-I: Rajeev Wankar

Operations and data

• Action based URI Vs RESTful URI

 Get the information

 /getMessages.do?id=10

RESTful will be /messages/10

Post the information

 /postMessages.do?id=10

RESTful will be /messages/10

61 CC-REST-I: Rajeev Wankar

Operations and data

• Action based URI Vs RESTful URI

Delete the information

 /deleteMessages.do?id=10

 /messages/10

HTTP methods

62 CC-REST-I: Rajeev Wankar

HTTP methods

• Commonly used

GET

PUT

POST

DELETE

• Uncommon

HEAD

OPTIONS

63 CC-REST-I: Rajeev Wankar

HTTP method

• In the REST calls we have

/getMessages.do?id=10 /deleteMessages.do?id=10

 /messages/10 /messages/10

GET DELETE

64 CC-REST-I: Rajeev Wankar

Messenger

• In messenger application getting a message

 /messages/{messageID}

 /messages/20

GET

Client

GET

65 CC-REST-I: Rajeev Wankar

Messenger

• Updating a message

 /messages/{messageID}

Content need to be send in the body of the PUT request

 /messages/20

PUT

Client

PUT

66 CC-REST-I: Rajeev Wankar

messenger

• Deleting a message

 /messages/{messageID}

Message body is not required

 /messages/20

DELETE

Client

DELETE

67 CC-REST-I: Rajeev Wankar

messenger

• Creating a message requires collection URI

 /messages

(No message ID as it needs to be created)

 /messages

POST

Client

POST

/21
21

Request

always to the

collection URI

68 CC-REST-I: Rajeev Wankar

Collection URI & messages

 /messages

 gets all messages

 /messages/6/comments

 delete all comments of message 6

 /messages/6/comments

 get all comments of message 6

GET

DELETE

GET

69 CC-REST-I: Rajeev Wankar

Collection URI & messages

 /messages/6/comments

 creates new comment for message 6

 /messages/6/comments

 replace all comments for message 6
 with new list

POST

PUT

70 CC-REST-I: Rajeev Wankar

Method Idempotence

• What is the difference between PUT and

POST?

• Common HTTP methods are

GET

PUT

POST

DELETE

Read only Write

methods

71 CC-REST-I: Rajeev Wankar

Method Idempotence

• Safe to make multiple GET request to a

server.

• What about PUT, POST and DETELE?

72 CC-REST-I: Rajeev Wankar

Method Idempotence

• p = 200;

• p = 200;

• p = 200;

• p = 200;

Repeatable operation Vs

non-repeatable operation

73 CC-REST-I: Rajeev Wankar

Method Idempotence

GET

PUT

POST

DELETE

repeatable

???

74 CC-REST-I: Rajeev Wankar

Method Idempotence

• Deleting a message

 /messages/{messageID}

 /messages/20

DELETE

Client DELETE

75 CC-REST-I: Rajeev Wankar

Method Idempotence

GET

PUT

POST

DELETE

repeatable

???

76 CC-REST-I: Rajeev Wankar

Method Idempotence

• PUT

 /messages/20

Client

PUT

77 CC-REST-I: Rajeev Wankar

Method Idempotence

• PUT (once more)

 /messages/20

Client

PUT

78 CC-REST-I: Rajeev Wankar

Method Idempotence

GET

PUT

POST

DELETE

repeatable

???

79 CC-REST-I: Rajeev Wankar

Method Idempotence

• POST

 /messages

 /messages

POST

Client

POST

/21
21

80 CC-REST-I: Rajeev Wankar

Method Idempotence

• POST (once again)

 /messages

 /messages

POST

Client

POST

/22
22

81 CC-REST-I: Rajeev Wankar

Method Idempotence

GET

PUT

POST

DELETE

repeatable

Not safe for

repeat

82 CC-REST-I: Rajeev Wankar

Method Idempotence

GET

PUT

POST

DELETE

Idempotent

Non

Idempotent

83 CC-REST-I: Rajeev Wankar

Wiki Definition

• Idempotence is the property of

certain operations in mathematics

and computer science that they can be

applied multiple times without changing the

result beyond the initial application.

84 CC-REST-I: Rajeev Wankar

Wiki Definition

HTTP Method Idempotent Safe

OPTIONS YES YES

GET YES YES

HEAD YES YES

PUT YES NO

POST NO NO

DELETE YES NO

PATCH NO NO

85 CC-REST-I: Rajeev Wankar

Other HTTP methods

• The HEAD method asks for a response

identical to that of a GET request, but without

the response body

• The PATCH method is used to apply partial

modifications to a resource.

• The CONNECT method establishes a tunnel

to the server identified by the target resource.

86 CC-REST-I: Rajeev Wankar

POST vs PUT

• Resource creation request should be always

be POST

• Update request should use PUT method

87 CC-REST-I: Rajeev Wankar

CACHing GET responses

 /messages/{messageID}

 /messages/20

GET

Client

GET

Client

88 CC-REST-I: Rajeev Wankar

Refresh Brower effect

• F5 results in performing last HTTP request

• If Idempotent no issues

• If non Idempotent ?? Like submitting a form

• Brower should ask you before making

changes (safeguard)

89 CC-REST-I: Rajeev Wankar

REST responses

 Requested URI

For a web application the response is html page

Client

HTTP
method

?

90 CC-REST-I: Rajeev Wankar

REST responses

 Requested URI

 XML/JSON/…

Client

HTTP
method

?

JSON is gaining popularity as the client is a browser

and mostly runs JavaScript code, it is handy if response

is in JSON

91 CC-REST-I: Rajeev Wankar

Message Entity class & JSON response

public class MessageEntity {
 private long id;
 private string message;
 private string name;
 private date datecreation;
}

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
}

92 CC-REST-I: Rajeev Wankar

Message Entity & XML response

public class MessageEntity {
 private long id;
 private string message;
 private string name;
 private date datecreation;
}

<messageEntity>
 <id>10</id>
 <message>Cloud Computing</message>
 <name>Rajeev</name>
 <datecreation>2018-03-18T20:07:17.123</datecreation>
</messageEntity>

93 CC-REST-I: Rajeev Wankar

Responses to the same resource

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
}

<messageEntity>
 <id>10</id>
 <message>Cloud Computing</message>
 <name>Rajeev</name>
 <datecreation>2018-03-18T20:07:17.123</datecreation>
</messageEntity>

Message id 10

Transferring the Representational State

94 CC-REST-I: Rajeev Wankar

Responses to the same resource

• How does client know what format the

response is in?

• As a client one can ask for the particular

format but there is no guarantee

• Using HTTP header

• Header/body

• Header contains the metadata

• Content type response (JSON/XML/…)

95 CC-REST-I: Rajeev Wankar

Parses based on content type

• Message length
• Date
• Content type

Message body

Header

96 CC-REST-I: Rajeev Wankar

Status Codes

• When the client is not human then error code

needs to be returned

• Done using status code

• HTTP specification requires that the first

line of the response as “status code”

• 200 OK

• 404 Not Found

97 CC-REST-I: Rajeev Wankar

Status Codes

• Starts from 100 and go till 599

• Not all are valid codes

• There are five classes of codes.

• 1XX informational (ex. Ack. responses)

• 2XX Success

– 200 success OK

– 201 successful resource creation, use with

POST

– 204 No content, use with DELETE

98 CC-REST-I: Rajeev Wankar

Status Codes

• 3XX Redirection

• Server asks client to do further action to

complete the request

– 302 found

– 307 temporary redirect (don’t ask me, ask

other URL)

– 304 not modified (error code)

99 CC-REST-I: Rajeev Wankar

Status Codes

• 4XX Client error

• Error in the request

– 400 bad request

– 401 unauthorized

– 403 Forbidden

– 404 not found

– 415 unsupported media type

100 CC-REST-I: Rajeev Wankar

Status Codes

• 5XX Server error

• Error in the request

– 500 internal server error (with details)

– Ex. Run time exception

101 CC-REST-I: Rajeev Wankar

Common HTTP code and Operations

102 CC-REST-I: Rajeev Wankar

H A T E O A S

• Hypermedia

• As

• The

• Engine

• Of

• Application

• State

103 CC-REST-I: Rajeev Wankar

HTTP links

• There is not service definition for REST

• Best REST don’t need documentation

• Ex. To visit a website do you need

documentation?

• Click link and we navigate

• Advantage of using HTTP

• Hyperlink allow you to navigate

• What if we use the same concept here?

104 CC-REST-I: Rajeev Wankar

HATEOAS

 Response URI

Client

HTTP
method

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
}

GET

105 CC-REST-I: Rajeev Wankar

HATEOAS

 Response URI

Client

HTTP
method

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
 “commentsUri”: ”api/messages/6/comments”,
 “linksUri”: ”api/messages/6/likes”,
 “sharesUri”: ”api/messages/6/shares”,
 “authorProfileUrl”: “api/profiles/Rajeev"
}

GET

106 CC-REST-I: Rajeev Wankar

HATEOAS

• Additional information sent by the server to

the client for further use (assistance) same as

the hypertext.

• Clients don’t have to hardcode these URI

• Driver or the engine of the application state.

107 CC-REST-I: Rajeev Wankar

H A T E O A S

• Hypermedia

• As

• The

• Engine

• Of

• Application

• State

108 CC-REST-I: Rajeev Wankar

Message Entity class

public class MessageEntity {
 private long id;
 private string message;
 private string name;
 private date datecreation;
}

109 CC-REST-I: Rajeev Wankar

Best Practices

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},

{
 “id”:11,
 “message”: “Hi there”,
 “name”: “Argha”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},
{
 “id”:12,
 “message”: “I am on leave”,
 “name”: “Kiran”,
 “datecreation”: “2018-03-18T20:07:17.123”,
}

110 CC-REST-I: Rajeev Wankar

Best Practices

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
}

{
 “id”:11,
 “message”: “Hi there”,
 “name”: “Argha”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},
{
 “id”:12,
 “message”: “I am on leave”,
 “name”: “Kiran”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},

111 CC-REST-I: Rajeev Wankar

Best Practices

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
},

{
 “id”:11,
 “message”: “Hi there”,
 “name”: “Argha”,
 “datecreation”: “2018-03-18T20:07:17.123”
},
{
 “id”:11,
 “message”: “I am on leave”,
 “name”: “Kiran”,
 “datecreation”: “2018-03-18T20:07:17.123”,
}

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
}

 “/message/”

 + “10”

Message resource ID

112 CC-REST-I: Rajeev Wankar

Best Practices

• If we add href, it becomes handy for the client

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
 “href”:”/messages/10”,
 “comments-href”: ”/messages/6/comments”,
 “links-href”: ”/messages/10/likes”,
 “shares-href”: ”/messages/10/shares”,
 “authorProfile-href”: “/profiles/Rajeev“,
 “comment-post-href”:”/message/10/comments”
}

113 CC-REST-I: Rajeev Wankar

Best Practices

• BUT!!! It becomes messy, client needs to

remember many things

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
 “href”:”/messages/10”,
 “comments-href”: ”/messages/6/comments”,
 “links-href”: ”/messages/10/likes”,
 “shares-href”: ”/messages/10/shares”,
 “authorProfile-href”: “/profiles/Rajeev“,
 “comment-post-href”:”/message/10/comments”,
}

114 CC-REST-I: Rajeev Wankar

“rel” attribute

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”,
 “links”: [
 {
 “href”: ”/messages/1”,
 “rel” : “self”
 }
]
}

It shows the relationship between the current document

and the link document

115 CC-REST-I: Rajeev Wankar

“rel” attribute

{
 “id”:10,
 “message”: “Cloud Computing”,
 “name”: “Rajeev”,
 “datecreation”: “2018-03-18T20:07:17.123”
 “links”: [
 {
 “href”: ”/messages/1”,
 “rel” : “self”
 },
 {
 “href”: ”/messages/1/comments”,
 “rel” : “comments”
 },
 :
 :
]
}

116 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• When we design API for the consumption,

can we say it is fully RESTful?

• Leonard Richardson suggested a model

known as “The Richardson Maturity Model”

117 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• Every API belongs to one of these levels

• Level 3

• Level 2

• Level 1

• Level 0

118 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• Level 0

• One URI (endpoint where service exposed)

• Message body contains the all information

details, in SOAP

• Swamp of POX (Plain Old XML)

• No use of HTTP construct in the SOAP

119 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• Level 1 (Starting level)

• Individual URI for each resource

• Ex. Message/Comment/Profile have

individual URI

120 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• Level 2 (Starting level)

• Use right HTTP method with status code

121 CC-REST-I: Rajeev Wankar

The Richardson Maturity Model

• Level 3 (Starting level)

• Use HATEOAS (Hypermedia As The Engine

• Of Application State)

• Response have the links that the client can

use

