
1
 GC: Web Services Part 2: Rajeev Wankar

Web Services

2
 GC: Web Services Part 2: Rajeev Wankar

Web Services

Part II

3
 GC: Web Services Part 2: Rajeev Wankar

Web Services

X!

Registered

using JAXR,

JUDDI, UDDI4J

4
 GC: Web Services Part 2: Rajeev Wankar

Client-Service Implementation

• Suppose we have found the service and have

its WSDL description, i.e. got past step 4.

• In the implementation, it is convenient to use

stubs - java classes suitable for web services

defined with WSDL.

5
 GC: Web Services Part 2: Rajeev Wankar

Client Stub

• Between the client code and the network is a client stub,

sometimes called client proxy.

• The client stub is responsible for taking a request from

the client and converting the request into a SOAP

request on the network - marshalling.

• Also responsible for receiving SOAP responses on

network and converting to a suitable form for client.

6
 GC: Web Services Part 2: Rajeev Wankar

Server Stub

• Between the service and the network is a server stub,

sometimes called a skeleton.

• Responsible for receiving a SOAP request from the

client stub and converting it into a suitable form for the

service –un-marshalling.

• Also converts the response from the service into a SOAP

message for the client stub.

7
 GC: Web Services Part 2: Rajeev Wankar

Web Service Application

May be over

Internet

8
 GC: Web Services Part 2: Rajeev Wankar

Steps

• Client calls client stub.

• SOAP request sent across network (LAN/WAN)

• Server stub receives request and sends request to

service

• Service send result to server stub

• Server stub sends result across network to client

stub.

• Client stub sends result to client.

9
 GC: Web Services Part 2: Rajeev Wankar

Web Service Application

Call client stub
SOAP

request Request service

Result returned
SOAP

response
Client receives result

10
 GC: Web Services Part 2: Rajeev Wankar

WSDL

11
 GC: Web Services Part 2: Rajeev Wankar

Web Service Description

• Need a way of formally describing a service,

what is does, how it is accessed, etc.

• An Interface Description Language (IDL)

12
 GC: Web Services Part 2: Rajeev Wankar

Web Service Description

• Where does it fit?

13
 GC: Web Services Part 2: Rajeev Wankar

Web Service Definition Language (WSDL)

 A W3C standard XML document that describes three

fundamental properties of a service:

• What it is - operations (methods) it provides.

• How it is accessed - data format, protocols.

• Where it is located - protocol specific network address.

14
 GC: Web Services Part 2: Rajeev Wankar

Web Service Definition Language (WSDL)

• XML language for describing web services

• Web service is described as

 – A set of communication endpoints (ports)

• Endpoint is made of two parts

 – Abstract definitions of operations and messages

 – Concrete binding to networking protocol (and

 corresponding endpoint address) and message

 encoding (ex. SOAP over HTTP)

• Why this separation?

 – Enhance reusability

15

Web Service Definition Language (WSDL)

 GC: Web Services Part 2: Rajeev Wankar

16
 GC: Web Services Part 2: Rajeev Wankar

Web Service Definition Language (WSDL)

WSDL Document Example

• Simple service providing stock quotes

• A single operation called GetLastTradePrice

• Deployed using SOAP 1.1 over HTTP

• Request takes a ticker symbol of type string

• Response returns price as a float

17
 GC: Web Services Part 2: Rajeev Wankar

Elements of a WSDL document

18
 GC: Web Services Part 2: Rajeev Wankar

The WSDL Document Structure

 A WSDL document describes a web service using these

major elements:

• <portType> The operations performed by the web

service

• <message> The messages used by the web service

• <types> The data types used by the web service

• <binding> The communication protocols used by the

web service

• Other are Operation, port and service

19
 GC: Web Services Part 2: Rajeev Wankar

WSDL Structure

<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

 definition of port.......

</portType>

<binding>

 definition of a binding....

</binding>

</definitions>

Service

Port
(e.g. http://host/svc)

Binding
(e.g. SOAP)

Abstract interface

portType

operation(s)

inMesage outMessage

Port

Binding

20
 GC: Web Services Part 2: Rajeev Wankar

Types

• The <types> element defines the data types

that are used by the web service.

• For maximum platform neutrality, WSDL uses

XML Schema syntax to define data types.

21
 GC: Web Services Part 2: Rajeev Wankar

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

xmlns:tns="http://example.com/stockquote.wsdl"

xmlns:xsd1="http://example.com/stockquote.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/”>

<types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

 <all>

 <element name=”tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

</types>

Type Example

22
 GC: Web Services Part 2: Rajeev Wankar

message

• The <message> element defines the data elements

of an operation.

• Each message can consist of one or more parts. The

parts can be compared to the parameters of a

function call in a traditional programming language.

• Abstract, typed definitions of data being exchanged

23
 GC: Web Services Part 2: Rajeev Wankar

portType/interface

 The <portType> element is the most important WSDL

element.

• It describes a web service, the operations that can be

performed, and the messages that are involved.

• The <portType> element can be compared to a function

library (or a module, or a class) in a traditional

programming language.

24
 GC: Web Services Part 2: Rajeev Wankar

WSDL <portType> operation types

• The request-response type is the most common
operation type, but WSDL defines four types:

TYPE DEFINTION

One-Way The operation can receive a message but will not

return a response

Request-response The operation can receive a request and will return a

response

Solicit-response The operation can send a request and will wait for a

response

Notification The operation can send a message but will not wait

for a response

25
 GC: Web Services Part 2: Rajeev Wankar

port, service, operation

• Describes “where” service is.

• port - describes how a binding is deployed at the

endpoint of a network

– Defines a single communication endpoint

– Endpoint address for binding

– URL for HTTP, email address for SMTP

• service - a named collection of ports

• operation- Abstract description of an action

 – Refers to an input and/or output messages

26
 GC: Web Services Part 2: Rajeev Wankar

<message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">

 <part name="body" element="xsd1:TradePrice"/>

</message>

<portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/>

 </operation>

<!-- More operations -->

</portType>

Ex. Messages, Operation, Port type

27
 GC: Web Services Part 2: Rajeev Wankar

Binding

 Describes “how” the elements in abstract

interface (portType) are converted in actual

data representations and protocols e.g.

SOAP over HTTP.

28
 GC: Web Services Part 2: Rajeev Wankar

<binding name="StockQuoteSoapBinding"

type="tns:StockQuotePortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation

 soapAction="http://example.com/GetLastTradePrice"/>

 <input> <soap:body use="literal" />

 </input>

 <output> <soap:body use="literal" />

 </output>

 </operation>

</binding>

<service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort"

 binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

</service>

Ex. Binding, Port, Service

Can be RPC

Can be “Encoded”,

literal means that the

type definitions

literally follow an

XML schema defn.

29
 GC: Web Services Part 2: Rajeev Wankar

Binding

• The binding element has two attributes - the name attribute and

the type attribute.

• The name attribute (you can use any name you want) defines the

name of the binding, and the type attribute points to the port for
the binding, in this case the "StockQuotePortType" port.

• The soap:binding element has two attributes - the style attribute

and the transport attribute.

• The style attribute can be "rpc" or "document". In this case we use

document. The transport attribute defines the SOAP protocol to

use on HTTP.

• The operation element defines each operation that the port

exposes.

• For each operation the corresponding SOAP action has to be

defined. One must also specify how the input and output are

encoded. In this case we use "literal".

30
 GC: Web Services Part 2: Rajeev Wankar

Binding

• The binding element has two attributes - the name attribute and

the type attribute.

• The name attribute (you can use any name you want) defines the

name of the binding, and the type attribute points to the port for
the binding, in this case the "StockQuotePortType" port.

<binding name="StockQuoteSoapBinding"

type="tns:StockQuotePortType">

 :

 :

 :

 : :

<service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort"

 binding="tns:StockQuoteSoapBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

</service>

31
 GC: Web Services Part 2: Rajeev Wankar

Binding

• The soap:binding element has two attributes - the style attribute

and the transport attribute.

• The style attribute can be "rpc" or "document". In this case we use

document. The transport attribute defines the SOAP protocol to

use on HTTP.

:

:

: <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

:

:

:

32
 GC: Web Services Part 2: Rajeev Wankar

Binding

• The operation element defines each operation that the port

exposes.

• For each operation the corresponding SOAP action has to be

defined. One must also specify how the input and output are

encoded. In this case we use "literal".

 :

<operation name="GetLastTradePrice">

 <soap:operation

soapAction="http://example.com/GetLastTradePrice"/>

 <input> <soap:body use="literal" />

 </input>

 <output> <soap:body use="literal" />

 </output>

</operation>

 :

33
 GC: Web Services Part 2: Rajeev Wankar

Binding

• The binding element has two attributes - the name attribute and

the type attribute.

• The name attribute (you can use any name you want) defines the

name of the binding, and the type attribute points to the port for
the binding, in this case the "StockQuotePortType" port.

• The soap:binding element has two attributes - the style attribute

and the transport attribute.

• The style attribute can be "rpc" or "document". In this case we

use document. The transport attribute defines the SOAP protocol

to use on HTTP.

• The operation element defines each operation that the port

exposes.

• For each operation the corresponding SOAP action has to be

defined. One must also specify how the input and output are

encoded. In this case we use "literal".

34
 GC: Web Services Part 2: Rajeev Wankar

Binding

• Document: the content of <soap:Body> is specified by XML

Schema defined in the <wsdl:type> section. It does not need to

follow specific SOAP conventions. In short, the SOAP message is

sent as one "document" in the <soap:Body> element without

additional formatting rules having to be considered. Document style

is the default choice.

• RPC: The structure of an RPC style <soap:Body> element needs to

comply with the rules specified in detail in Section 7 of the SOAP 1.1

specification. According to these rules, <soap:Body> may contain

only one element that is named after the operation, and all

parameters must be represented as sub-elements of this wrapper

element.

35

SOAP Binding (revisit)

• A WSDL document describes a web service. A

WSDL binding describes how the service is bound to

a messaging protocol, particularly the SOAP.

• A WSDL SOAP binding can be either a RPC style or

a document style binding. A SOAP binding can also

have an encoded use or a literal use. This gives us

four style/use models:

– RPC/encoded

– RPC/literal

– Document/encoded

– Document/literal

 GC: Web Services Part 2: Rajeev Wankar

36

RPC/encoded WSDL for myMethod

• public void myMethod(int x, float y);

 GC: Web Services Part 2: Rajeev Wankar

 <message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
 </message>
 <message name="empty"/>

 <portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 <output message="empty"/>
 </operation>
 </portType>

 <binding .../>

Method
doesn't return

value

37

RPC/encoded SOAP message for myMethod

 GC: Web Services Part 2: Rajeev Wankar

• public void myMethod(int x, float y);

 <soap:envelope>
 <soap:body>
 <myMethod>
 <x xsi:type="xsd:int">5</x>
 <y xsi:type="xsd:float">5.0</y>
 </myMethod>
 </soap:body>
 </soap:envelope>

Method name
appears in the

message

overhead which
degrades

throughput https://www.ibm.com/developerworks/library/ws-

whichwsdl/

38

RPC/encoded SOAP message for myMethod

• Strengths

– Straightforward WSDL.

– The operation name appears in the message, so

the receiver has an easy time dispatching this

message to the implementation of the operation.

• Weaknesses

– The type encoding info (such as xsi:type="xsd:int")

is usually just overhead which degrades

throughput performance.

 GC: Web Services Part 2: Rajeev Wankar

39

RPC/encoded SOAP message for myMethod

– One cannot easily validate this message since

only the <x ...>5</x> and <y ...>5.0</y> lines

contain things defined in a schema; the rest of the

soap:body contents comes from WSDL definitions.

– Although it is legal WSDL, RPC/encoded is not

WS-I compliant.

 GC: Web Services Part 2: Rajeev Wankar

40

RPC/literal WSDL for myMethod

 GC: Web Services Part 2: Rajeev Wankar

 <message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
 </message>
 <message name="empty"/>

 <portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 <output message="empty"/>
 </operation>
 </portType>

 <binding .../>

41

RPC/literal SOAP message for myMethod

 GC: Web Services Part 2: Rajeev Wankar

 <soap:envelope>
 <soap:body>
 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>
 </soap:body>
 </soap:envelope>

42

RPC/literal SOAP message for myMethod

• Strengths

– The WSDL is still straightforward.

– The operation name still appears in the message.

– The type encoding info is eliminated.

– RPC/literal is WS-I compliant.

• Weaknesses

– You still cannot easily validate this message since

only the <x ...>5</x> and <y ...>5.0</y> lines

contain things defined in a schema; the rest of the

soap:body contents comes from WSDL definitions.

 GC: Web Services Part 2: Rajeev Wankar

43

Document/encoded

• Nobody follows this style. It is not WS-I compliant.

 GC: Web Services Part 2: Rajeev Wankar

44

Document/literal WSDL for myMethod

 GC: Web Services Part 2: Rajeev Wankar

 <types>
 <schema>
 <element name="xElement" type="xsd:int"/>
 <element name="yElement" type="xsd:float"/>
 </schema>
 </types>

 <message name="myMethodRequest">
 <part name="x" element="xElement"/>
 <part name="y" element="yElement"/>
 </message>
 <message name="empty"/>

 <portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 <output message="empty"/>
 </operation>
 </portType>

 <binding .../>

45

Document/literal SOAP for myMethod

 GC: Web Services Part 2: Rajeev Wankar

 <soap:envelope>
 <soap:body>
 <xElement>5</xElement>
 <yElement>5.0</yElement>
 </soap:body>
 </soap:envelope>

46

Document/literal SOAP for myMethod

 GC: Web Services Part 2: Rajeev Wankar

• Strengths

– There is no type encoding info.

– You can finally validate this message with any

XML validator. Everything within the soap:body is

defined in a schema.

– Document/literal is WS-I compliant, but with

restrictions

47

Document/literal SOAP for myMethod

 GC: Web Services Part 2: Rajeev Wankar

• Weaknesses

– The WSDL is getting a bit more complicated.

– This is a very minor weakness, however, since

WSDL is not meant to be read by humans.

– The operation name in the SOAP message is lost.

Without the name, dispatching can be difficult, and

sometimes impossible.

– WS-I only allows one child of the soap:body in a

SOAP message.

48

Document/literal SOAP for myMethod

• The document/literal style seems to be an

rearranged the strengths and weaknesses from the

RPC/literal model.

• One can validate the message, but lose the operation

name.

• Is there anything we can do to improve upon this?

• Yes. It's called the document/literal wrapped pattern.

 GC: Web Services Part 2: Rajeev Wankar

49
 GC: Web Services Part 2: Rajeev Wankar

Document/literal wrapped WSDL for myMethod
 <types>
 <schema>
 <element name="myMethod">
 <complexType>
 <sequence>
 <element name="x" type="xsd:int"/>
 <element name="y" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="myMethodResponse">
 <complexType/>
 </element>
 </schema>
 </types>
 <message name="myMethodRequest">
 <part name="parameters" element="myMethod"/>
 </message>
 <message name="empty">
 <part name="parameters" element="myMethodResponse"/>
 </message>

 <portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 <output message="empty"/>
 </operation>
 </portType>

 <binding .../>

50
 GC: Web Services Part 2: Rajeev Wankar

Document/literal wrapped SOAP message for myMethod

 <soap:envelope>
 <soap:body>
 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>
 </soap:body>
 </soap:envelope>

• It looks exactly like the RPC/literal SOAP message, but there's a

subtle difference.

• In the RPC/literal SOAP message, the <myMethod> child of

<soap:body> was the name of the operation.

• In the document/literal wrapped SOAP message, the <myMethod>

clause is the name of the wrapper element which the single input

message's part refers to.

51
 GC: Web Services Part 2: Rajeev Wankar

Document/literal wrapped SOAP message for myMethod

 <soap:envelope>
 <soap:body>
 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>
 </soap:body>
 </soap:envelope>

 <soap:envelope>
 <soap:body>
 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>
 </soap:body>
 </soap:envelope>

• It looks exactly like the RPC/literal SOAP message, but there's a

subtle difference.

• In the RPC/literal SOAP message, the <myMethod> child of

<soap:body> was the name of the operation.

• In the document/literal wrapped SOAP message, the <myMethod>

clause is the name of the wrapper element which the single input

message's part refers to.

52
 GC: Web Services Part 2: Rajeev Wankar

WSDL view of web service

WSDL DOCUMENT

SERVICE A

Port “Abc”
http://… /abc

Port “Pqr”

Port “Xyz”

Binding “AbcM”

SOAP/HTTP

SERVICE B

Port…

PORT Type “AbcXX

Operation“Op1”

Operation“Op2”

53
 GC: Web Services Part 2: Rajeev Wankar

Web Service Invocation

54
 GC: Web Services Part 2: Rajeev Wankar

Message definitions

Click here to see the

Google Search wsdl file

GoogleSearch.docx
GoogleSearch.docx
GoogleSearch.docx
GoogleSearch.docx

55
 GC: Web Services Part 2: Rajeev Wankar

For more information

– SOAP

http://www.w3c.org/TR/soap

– WSDL

http://www.w3c.org/TR/wsdl

